日本海西部海域におけるズワイガニの相対成長、アイソサイム遺伝子頻度、漁獲量変動の漁場別比較

増田恵一

A Comparison of Allometry, Isoenzyme Allelic Frequencies and Change of Capture among Fishing Grounds of Snow Crab Chionoecetes opilio in the Western Japan Sea

Keiichi MASUDA

日本海西部の底曳網漁業にとってズワイガニ Chionoecetes opilio は重要な漁業資源である。またその漁獲量は 1965 年をピークとして年々減少する傾向にあり、資源管理手法の開発が検討されている。しかし資源解析の基本となる系群構造については未だ不明な点が多い。そこで筆者は日本海西部における重要なズワイガニ漁場である隠岐北方、但馬沖、浜田沖の漁場で、底曳網により漁獲されたズワイガニについて、相対成長、アイソサイム遺伝子頻度、漁獲量変動の比較を行い、漁場別の差を認めたのでここに報告する。

報告に先立ちアイソサイム分析の方法について懇切に御教示をいただいた高知大学農学部谷口順彦教授並びにHan Hyon Seob 氏、ズワイガニの測定にご協力をいただいた兵庫県水産試験場の大谷徹也研究員、松井芳房試験研究技術員を始め職員の方々に深くお礼を申し上げる。

資料および方法

形態測定のためのサンプルは第 1 図に示す a, b, c の漁場で底曳網により漁獲されたものである。a, b, c の海域は日本海区冲合底曳網漁業漁場別漁獲統計調査資料でそれぞれ隠岐北方、但馬沖、浜田沖と呼ばれている海区であるが、本報告では説明の都合上以下 a, b, c と表すことにする。なお第 1 図にはズワイガニのおもな生息域である 200～400 m の水深帯も示した。1988 年 1 月から 2 月にかけて兵庫県の竹野港、柴山港、香住港、諸寄港に水揚げされたズワイガニ雄に対して、ノギスを用い m 単位で測定した。測定部位は第 2 図に示した。なお測定したズワイガニの漁獲位置は、漁業者の操業日誌を見て確認した。

*兵庫県立水産試験場（Hyogo Prefectural Fisheries Experimental Station, Akashi 673）
得られた測定データから、漁場ごとに甲幅と他の測定値の間の相対成長式を求めた。2つの形態の関係を表す相対成長式として、一般に次の式が用いられている。

\[y = a \times x^b \]

本報告では、xに甲幅、yに他の測定値をいれ、xとyの常用対数について最小2乗法により回帰式を求め、相対成長式とした。漁場ごとの相対成長式の差の検定は、常法である2つの回帰式の勾配の差の検定法11により行った。

第1図 日本海西部海域におけるズワイガニ漁場図

第2図 ズワイガニの測定部位
a.甲幅 b.鉤脚長 c.鉤脚高 d.鉤脚幅
e.第1歩脚長節長 f.甲長
増田：日本海西部海域のズワイガニの漁場別比較

アイソサイム分析用の試料は第1図に示した通り漁場a、bから各1点で、1989年1月15〜18日にかけて、底曳網により捕獲されたズワイガニ雄である。試料は水揚げ後直ちに-20℃で凍結した。凍結状態から眼柄または腹部筋肉を取り出し、ビンセットで細かく砕き、13000rpmで3〜5分間の遠心分離を行って得た上澄みを、粗酵素液とした。アイソサイムは水平式テンプルゲル電気泳動法（ゲル濃度12%、通電量はゲル断面1cmあたり4mA）によって検出した。泳動用緩衝液としてクエン酸—アミノプロピルモルフォリン（C-APM pH6.0）を用いた。検出酵素は、FM、α-GPD、LDH、MDH、IDH、FGD、GPI、ME、MPI、EST、AAT、SOD、の13酵素であり、検出部位は、6PGDとESTでは眼剝部、他の酵素では腹部筋肉とした。なお腹部筋肉の筋縄蛋白の変異を調べるため、同様に電気泳動にかけた。染色法は、グロプロリンに準じた。

漁場ごとの漁獲量変動の比較のために、日本海区沖合底底びき網漁業漁場別漁獲統計資料に記載されている漁場別・魚種別のCPUEを引用した。

結果

漁場ごとのズワイガニ雄の相対成長式を第1表に示した。甲幅と鉤脚長、鉤脚高、鉤脚幅の相対成長式では、回帰係数がいずれも1を越えており、鈍脚のサイズの甲幅に対する優成長が認められた。また甲幅と鉤脚長、鉤脚高、鉤脚幅、第一歩脚長節長および体重の相対成長式では、漁場aで他の漁場に比べ回帰係数が高かった。一方甲幅と甲長の相対成長式では、漁場ごとの差はあまり認められなかった。

漁場ごとのズワイガニ雄の相対成長式の差の検定結果を第2表に示した。甲幅と鉤脚長、鉤脚高および鉤脚幅の相対成長式では、漁場aとb、aとcの間で危険率1%の有意差が認められた。また甲幅と第一歩脚長節長の相対成長式では、漁場aとbの間で危険率1%の有意差が認められた。漁場aでは、他の漁場に比べ鈍脚のサイズの甲幅に対する相対成長が遅いといえる。

<table>
<thead>
<tr>
<th>渔場</th>
<th>回帰の統計量</th>
<th>説明変数（x）</th>
<th>甲幅</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>y切片</td>
<td>B 1.801</td>
<td>-2.835</td>
</tr>
<tr>
<td></td>
<td>回帰係数</td>
<td>1.686</td>
<td>2.044</td>
</tr>
<tr>
<td></td>
<td>標本数</td>
<td>n</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>相関係数</td>
<td>r</td>
<td>0.950</td>
</tr>
<tr>
<td>b</td>
<td>y切片</td>
<td>B 1.945</td>
<td>-1.487</td>
</tr>
<tr>
<td></td>
<td>回帰係数</td>
<td>1.284</td>
<td>1.395</td>
</tr>
<tr>
<td></td>
<td>標本数</td>
<td>n</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>相関係数</td>
<td>r</td>
<td>0.943</td>
</tr>
<tr>
<td>c</td>
<td>y切片</td>
<td>B 1.093</td>
<td>-1.301</td>
</tr>
<tr>
<td></td>
<td>回帰係数</td>
<td>1.258</td>
<td>1.311</td>
</tr>
<tr>
<td></td>
<td>標本数</td>
<td>n</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>相関係数</td>
<td>r</td>
<td>0.981</td>
</tr>
</tbody>
</table>

注）相対成長式は、Log(y) = B1 + B2 • Log(x) である。
第2表 漁場別相対成長の差の検定結果

<table>
<thead>
<tr>
<th>漁場</th>
<th>相対成長式</th>
<th>甲幅－鉄脚長</th>
<th>甲幅－鉄脚高</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>漁場1</td>
<td>標本数N</td>
<td>164</td>
<td>164</td>
</tr>
<tr>
<td>xの平均</td>
<td>0.526</td>
<td>0.526</td>
<td>0.526</td>
</tr>
<tr>
<td>yの平均</td>
<td>1.6558</td>
<td>1.6558</td>
<td>0.2756</td>
</tr>
<tr>
<td>相関係数</td>
<td>r</td>
<td>0.9502</td>
<td>0.9502</td>
</tr>
<tr>
<td>回帰係数</td>
<td>b</td>
<td>1.6859</td>
<td>1.6859</td>
</tr>
<tr>
<td>標本数N</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>xの平均</td>
<td>0.1488</td>
<td>0.1593</td>
<td>0.1593</td>
</tr>
<tr>
<td>yの平均</td>
<td>0.2766</td>
<td>0.2522</td>
<td>0.2622</td>
</tr>
<tr>
<td>相関係数</td>
<td>r</td>
<td>0.9433</td>
<td>0.9306</td>
</tr>
<tr>
<td>回帰係数</td>
<td>b</td>
<td>1.2841</td>
<td>1.258</td>
</tr>
<tr>
<td>t－値</td>
<td>4.4267</td>
<td>5.2827</td>
<td>0.3395</td>
</tr>
<tr>
<td>自由度</td>
<td>200</td>
<td>213</td>
<td>89</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>漁場</th>
<th>相対成長式</th>
<th>甲幅－鉄脚幅</th>
<th>甲幅－第1歩脚長節長</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>標本数N</td>
<td>164</td>
<td>164</td>
<td>164</td>
</tr>
<tr>
<td>xの平均</td>
<td>0.526</td>
<td>0.526</td>
<td>0.526</td>
</tr>
<tr>
<td>yの平均</td>
<td>2.8403</td>
<td>2.8403</td>
<td>0.3579</td>
</tr>
<tr>
<td>相関係数</td>
<td>r</td>
<td>0.9475</td>
<td>0.9475</td>
</tr>
<tr>
<td>回帰係数</td>
<td>b</td>
<td>2.2018</td>
<td>2.2018</td>
</tr>
<tr>
<td>標本数N</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>xの平均</td>
<td>0.1488</td>
<td>0.1593</td>
<td>0.1593</td>
</tr>
<tr>
<td>yの平均</td>
<td>0.3570</td>
<td>0.3144</td>
<td>0.3144</td>
</tr>
<tr>
<td>相関係数</td>
<td>r</td>
<td>0.8797</td>
<td>0.9493</td>
</tr>
<tr>
<td>回帰係数</td>
<td>b</td>
<td>1.3645</td>
<td>1.3337</td>
</tr>
<tr>
<td>t－値</td>
<td>6.6188</td>
<td>7.8158</td>
<td>0.2408</td>
</tr>
<tr>
<td>自由度</td>
<td>200</td>
<td>213</td>
<td>89</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>漁場</th>
<th>相対成長式</th>
<th>甲幅－甲長</th>
<th>甲幅－体重</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>標本数N</td>
<td>164</td>
<td>164</td>
<td>164</td>
</tr>
<tr>
<td>xの平均</td>
<td>0.526</td>
<td>0.526</td>
<td>0.526</td>
</tr>
<tr>
<td>yの平均</td>
<td>0.4952</td>
<td>0.4952</td>
<td>0.1401</td>
</tr>
<tr>
<td>相関係数</td>
<td>r</td>
<td>0.9894</td>
<td>0.9894</td>
</tr>
<tr>
<td>回帰係数</td>
<td>b</td>
<td>0.96</td>
<td>0.96</td>
</tr>
<tr>
<td>標本数N</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>xの平均</td>
<td>0.1488</td>
<td>0.1593</td>
<td>0.1593</td>
</tr>
<tr>
<td>yの平均</td>
<td>0.1401</td>
<td>0.1521</td>
<td>0.1521</td>
</tr>
<tr>
<td>相関係数</td>
<td>r</td>
<td>0.9833</td>
<td>0.9839</td>
</tr>
<tr>
<td>回帰係数</td>
<td>b</td>
<td>0.9544</td>
<td>0.9654</td>
</tr>
<tr>
<td>t－値</td>
<td>2.1965</td>
<td>0.2321</td>
<td>0.3162</td>
</tr>
<tr>
<td>自由度</td>
<td>200</td>
<td>213</td>
<td>89</td>
</tr>
</tbody>
</table>

* 危険率5％で有意差あり ** 危険率1％で有意差あり

第3図にはズワイガニ雄の漁場ごとの甲幅と鉄脚長、鉄脚高および第1歩脚長節長との関係をグラフに示した。鉄脚長および鉄脚高は、甲幅の対数が2.0つまり甲幅が100mm前後の時には、漁場aで他の漁場より小さいが、成長にともなって漁場間の差が少なくなる傾向が認められた。第1歩脚長節長では、甲幅が小さい時には漁場aで他の漁場より小さいが、成長が進むと漁場aで他の漁場より大きくなる傾向が認められた。また漁場aにおける鉄脚高では、甲幅の対数がおおむね2.02〜2.07の範囲（甲幅105〜117mm）で、不連続で飛躍的な成長がみられたが、他の漁場ではこのような飛躍的な成長は認められ
なかった。

ズワイガニ雌のアソサイムの泳動模式図を第4図に示した。検出した12の酵素および筋繊維蛋白のうち、MDHと筋繊維蛋白でそれぞれ2つの遺伝子座が認められ、合計15の遺伝子座が確認された。そしてα-gpd, Mdh-2, 6pgd, Gpi, Aat, Sp-1の6遺伝子座では2つの、Pgmでは3つの遺伝子が認められた。

漁場別のアソサイム遺伝子型および遺伝子頻度組成を第3表に示した。アソサイム遺伝子からみた遺伝的分化の程度は低く、5%以上の頻度で複数の対立遺伝子が共存する多型遺伝子座の割合は、漁
第4図 ズワイガニ雌のアイソザイムの泳動模式図

<table>
<thead>
<tr>
<th>酵素名</th>
<th>アミノラクチン</th>
<th>α-GPD</th>
<th>LDH</th>
<th>MDH</th>
<th>IDH</th>
<th>酵素名</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>+3</td>
<td>-</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>酵素名</td>
</tr>
<tr>
<td>α-GPD</td>
<td>+3</td>
<td>-</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>酵素名</td>
</tr>
<tr>
<td>LDH</td>
<td>+2</td>
<td>-</td>
<td>A/B</td>
<td>A/B</td>
<td>A/B</td>
<td>酵素名</td>
</tr>
<tr>
<td>MDH</td>
<td>+1</td>
<td>-</td>
<td>A/B</td>
<td>A/B</td>
<td>A/B</td>
<td>酵素名</td>
</tr>
<tr>
<td>IDH</td>
<td>0</td>
<td>-</td>
<td>A/B</td>
<td>A/B</td>
<td>A/B</td>
<td>酵素名</td>
</tr>
<tr>
<td>PCM</td>
<td>-1</td>
<td>-</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>酵素名</td>
</tr>
<tr>
<td>6PGD</td>
<td>-1</td>
<td>-</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>酵素名</td>
</tr>
<tr>
<td>GPI</td>
<td>+3</td>
<td>-</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>酵素名</td>
</tr>
<tr>
<td>ME</td>
<td>+3</td>
<td>-</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>酵素名</td>
</tr>
<tr>
<td>MPI</td>
<td>+2</td>
<td>-</td>
<td>A/B</td>
<td>A/B</td>
<td>A/B</td>
<td>酵素名</td>
</tr>
<tr>
<td>EST</td>
<td>+1</td>
<td>-</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>酵素名</td>
</tr>
<tr>
<td>AAT</td>
<td>0</td>
<td>-</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>酵素名</td>
</tr>
<tr>
<td>SOD</td>
<td>-1</td>
<td>-</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>酵素名</td>
</tr>
<tr>
<td>SP</td>
<td>-2</td>
<td>-</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>酵素名</td>
</tr>
</tbody>
</table>

漁場aで0.133、漁場bで0.067であり、両者を合わせた全体では0である。平均ヘテロ接合体率は漁場aで0.023、漁場bで0.015、全体で0.018であった。2つの漁場の間では、片方の漁場でみられるもう片方の漁場ではみられない遺伝子もあるが、遺伝子頻度組成を比較すると両者の差は小さいものであった。漁場a、b間で根井の遺伝的距離を計算すると、0.0092という値が得られた。遺伝的距離は生物の地方品種間では0.01程度であるという推定があるが、その値と比べると漁場a、b間での値は非常に小さいものであった。

第5図にズワイガニ雌雄別、漁場別のCPUE変動を示した。雌雄ともいずれの漁場でもCPUEは減少する傾向にあり、資源状態の悪化が現れている。減少の速さは雌雄とも漁場aで最も速く、漁場bで最も遅い。またこの漁場でもCPUEは減少傾向にあるものの、若干の起伏もあり、その起伏は漁場ごとに異なっている。雌の場合、漁場aで1980年にピークが認められるが、他の漁場では大きなピークは認められない。雌の場合、漁場aで1979年と1983年にピークが、1982年に一時的な減少が認められるが、漁場bでは1979年にピークが認められる以外では顕著な起伏はなく、また漁場cでは1977年と1982年に弱いピークが認められる。大まかにみると、漁場aでは他の漁場と較べ、CPUEの減少傾向が強く、また変動の起伏も激しいようである。
第3表 ズワイガニ雌の漁場別アイソザイム遺伝子型および遺伝子頻度組成

<table>
<thead>
<tr>
<th>渔場</th>
<th>酵素</th>
<th>遺伝子型</th>
<th>遺伝子頻度組成</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM</td>
<td>Fm</td>
<td>19</td>
<td>19 1.000 0.000</td>
</tr>
<tr>
<td>α-GPD</td>
<td>α-Gpd</td>
<td>19</td>
<td>19 1.000</td>
</tr>
<tr>
<td>MDH</td>
<td>Mdh-1</td>
<td>19</td>
<td>19 1.000</td>
</tr>
<tr>
<td></td>
<td>Mdh-2</td>
<td>16 1</td>
<td>19 0.974 0.026</td>
</tr>
<tr>
<td>IDH</td>
<td>Idh</td>
<td>19</td>
<td>19 1.000</td>
</tr>
<tr>
<td>PGM</td>
<td>Pgm</td>
<td>17 2</td>
<td>19 0.947 0.053</td>
</tr>
<tr>
<td>GPI</td>
<td>Gpi</td>
<td>18</td>
<td>19 0.026 0.974</td>
</tr>
<tr>
<td>M 6PGD</td>
<td>6Pgd</td>
<td>19</td>
<td>19 1.000</td>
</tr>
<tr>
<td>ME</td>
<td>Me</td>
<td>19</td>
<td>19 1.000</td>
</tr>
<tr>
<td>MPI</td>
<td>Mpi</td>
<td>19</td>
<td>19 1.000</td>
</tr>
<tr>
<td>EST</td>
<td>Est</td>
<td>19</td>
<td>19 1.000</td>
</tr>
<tr>
<td>AAT</td>
<td>Aat</td>
<td>19</td>
<td>19 1.000</td>
</tr>
<tr>
<td>SOD</td>
<td>Sod</td>
<td>19</td>
<td>19 1.000</td>
</tr>
<tr>
<td>SP</td>
<td>Sp-1</td>
<td>16 3</td>
<td>19 0.921 0.079</td>
</tr>
<tr>
<td></td>
<td>Sp-2</td>
<td>19</td>
<td>19 1.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>渔場</th>
<th>酵素</th>
<th>遺伝子型</th>
<th>遺伝子頻度組成</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM</td>
<td>Fm</td>
<td>27</td>
<td>27 1.000</td>
</tr>
<tr>
<td>α-GPD</td>
<td>α-Gpd</td>
<td>26 1</td>
<td>27 0.981 0.019</td>
</tr>
<tr>
<td>MDH</td>
<td>Mdh-1</td>
<td>27</td>
<td>27 1.000</td>
</tr>
<tr>
<td></td>
<td>Mdh-2</td>
<td>27</td>
<td>27 1.000</td>
</tr>
<tr>
<td>IDH</td>
<td>Idh</td>
<td>27</td>
<td>27 1.000</td>
</tr>
<tr>
<td>PGM</td>
<td>Pgm</td>
<td>1 26</td>
<td>27 0.019 0.981</td>
</tr>
<tr>
<td>GPI</td>
<td>Gpi</td>
<td>27</td>
<td>27 1.000</td>
</tr>
<tr>
<td>M 6PGD</td>
<td>6Pgd</td>
<td>1 1</td>
<td>27 0.056 0.944</td>
</tr>
<tr>
<td>ME</td>
<td>Me</td>
<td>27</td>
<td>27 1.000</td>
</tr>
<tr>
<td>MPI</td>
<td>Mpi</td>
<td>27</td>
<td>27 1.000</td>
</tr>
<tr>
<td>EST</td>
<td>Est</td>
<td>27</td>
<td>27 1.000</td>
</tr>
<tr>
<td>AAT</td>
<td>Aat</td>
<td>1 25</td>
<td>27 0.019 0.981</td>
</tr>
<tr>
<td>SOD</td>
<td>Sod</td>
<td>27</td>
<td>27 1.000</td>
</tr>
<tr>
<td>SP</td>
<td>Sp-1</td>
<td>27</td>
<td>27 1.000</td>
</tr>
<tr>
<td></td>
<td>Sp-2</td>
<td>27</td>
<td>27 1.000</td>
</tr>
</tbody>
</table>

考察

ズワイガニ雌の成長にともなう形態変化について、Conan他1)はカナダ産のズワイガニ雌の精巣と形態を調査し、精巣の成熟にともない鉤脚が飛躍的に大きくなると述べている。本報告では漁場 a と a で、鉤脚の飛躍的な増加がみられた。精巣の調査を行っていないので断定はできないが、この鉤脚の形態変化はおそらくConan他によるものと、異なるのであろう。漁場 b、c ではこのような形態変化はみられなかったが、本報告では調査していない漁獲禁止サイズ（甲幅90mm未満）で起きている可能性もある。
ズワイガニのアイソザイムの遺伝的変異については、日本水産資源保護協会の報告7)がある。この報告では、日本海、オホーツク海、太平洋と日本近海の広い範囲でのサンプルについて調査が行われているが、ズワイガニの遺伝的変異は低く、採集地ごとの平均ヘテロ接合体率は、0.004〜0.012の範囲にあると述べられている。本報告で得られたヘテロ接合体率はこれより若干高いが、他の水産動物と比較するとわずかに低い水準にある。これらの点から、アイソザイム遺伝子の変異からみる限り、ズワイガニには遺伝的変異をもたらはじめた系統は存在していないことになる。しかしアイソザイムによる遺伝的変異の解析は数多くある遺伝子のうちのごく一部をみているのに過ぎず、本報告では取り上げなかった酵素のアイソザイム、またDNAの解析などにより遺伝的変異をとらえることができるかも知れない。
一方、相対成長では、漁場間で統計的に有意な差が認められた。遺伝物質の分子進化速度は自然淘汰の影響を受けず一定であるという木村の説を基にすると、アイソサイム遺伝子の変異も環境の効果を受けにくいものであろう。しかし形態に関する変異は環境の効果を受けやすいと考えられる。ズワイガニは孵化後長い浮遊生活を送ることが知られている。51 また日本海でのズワイガニ稚仔分布調査の結果からも、遠く離れた漁場間での稚仔の交流の可能性が指摘されている。89 しかし日本海は多くの性質の異なる水塊からなる、複雑な海洋構造を持っていることが知られており、浮遊生活から着底にいたる過程で淘汰が起こる可能性は大きい。47 本報告におけるズワイガニの相対成長の漁場差も、稚仔の着底までの環境条件の差によるという可能性も考えられる。

相対成長の差が環境条件の差によると仮定しても、甲幅約70〜140mmと幅広い年齢のズワイガニ雄での相対成長の差であることがから、環境条件の差は恒常的なものであると考えられる。なお、漁場aでは、他の漁場と較べCPUEの減少が速く、また変動の起伏が激しい傾向も認められており、少なくとも漁
場面のズワイガニは他の魚場のズワイガニと比較、資源としての性格を異にしていると判断して良いであろう。

文献

1）石川県・福井県・京都府・兵庫県・鳥取県・島根県・山口県：昭和63年度広域資源保養管理推進事業報告書（日本海西ブロック），1989.pp.1-75。
2）日本海区水産研究所：日本海区沖合底びき網漁業魚場別漁獲統計調査資料，（1976-1980）。
105-107。
4）谷口順彦・岡田豊典：マダイの生殖学的多型に関する遺伝学的研究，水生誌，46(4)，437-443(1980)。
5）大羽滋：集団の絶伝，第5版，東京大学出版会，東京，1977.pp.92-108。
7）日本水産資源保護協会：アインソイズムによる魚介類の集団解析，pp.287-290(1989)。
8）木村資生：分子進化の中立説，第5版，紀伊國屋書店，東京，1990.pp.82-114。
9）小林啓二：ズワイガニの増殖生態に関する研究，鳥取県水試報告，31，1-95(1989)。
10）大谷敏也・玉木哲也・増田恵一・魚田繁・秋武宏・高木英男：ズワイガニ移植放流事業調査，昭和61・兵庫県鳥取水試事報，111-112(1988)。
11）長沼光亮：日本海における漁況と海況，海と空，60(2)，47-61(1985)。