II 業務
１ 試験研究

(1) 項目一覧

ア 研究課題

<table>
<thead>
<tr>
<th>名称</th>
<th>研究期間</th>
<th>担当</th>
<th>財源区分</th>
</tr>
</thead>
<tbody>
<tr>
<td>潮川海内河川水質環境調査</td>
<td>昭和36～</td>
<td>水産環境部</td>
<td>県県</td>
</tr>
<tr>
<td>潮川河川全河川対策研究</td>
<td>昭和47～</td>
<td>水産環境部</td>
<td>県県</td>
</tr>
<tr>
<td>新漁業管理制度推進情報提供事業（潮川河川）</td>
<td>平成9～</td>
<td>水産環境部</td>
<td>受託</td>
</tr>
<tr>
<td>資源評価調査（潮川河川）</td>
<td>平成12～</td>
<td>水産環境部</td>
<td>受託</td>
</tr>
<tr>
<td>重要赤潮被害防止対策事業（潮川河川）</td>
<td>平成16～</td>
<td>水産環境部</td>
<td>受託</td>
</tr>
<tr>
<td>資源管理技術推進事業（潮川河川）</td>
<td>平成23～</td>
<td>水産環境部</td>
<td>受託</td>
</tr>
<tr>
<td>植物塩田供給実証試験事業</td>
<td>平成25～29</td>
<td>水産環境部</td>
<td>国庫補助</td>
</tr>
<tr>
<td>豊かな潮川河川再生調査事業</td>
<td>平成27～31</td>
<td>水産環境部</td>
<td>県県・受託</td>
</tr>
<tr>
<td>植物塩田等の水質環境が低次生産生物に及ぼす影響調査</td>
<td>平成28～29</td>
<td>水産環境部</td>
<td>受託</td>
</tr>
<tr>
<td>死／潮川河川の漁場機能の再評価と漁場造成</td>
<td>平成28～29</td>
<td>水産環境部</td>
<td>国庫補助</td>
</tr>
<tr>
<td>増殖推進対策調査研究</td>
<td>平成25～</td>
<td>水産増殖部、内水面</td>
<td>県県</td>
</tr>
<tr>
<td>県県極東アサリ養殖振興事業</td>
<td>平成26～30</td>
<td>水産増殖部</td>
<td>県県</td>
</tr>
<tr>
<td>ワカメの遺伝資源収集・特性把握および種苗生産の定着化</td>
<td>平成29～31</td>
<td>水産増殖部</td>
<td>県県</td>
</tr>
<tr>
<td>アニ資源維持増強対策調査研究</td>
<td>平成22～</td>
<td>内水面</td>
<td>県県</td>
</tr>
<tr>
<td>サクラマス・サツキマスの生態の解明</td>
<td>平成29～33</td>
<td>内水面</td>
<td>県県</td>
</tr>
<tr>
<td>但馬沖合・沿岸資源有効利用調査</td>
<td>平成43～</td>
<td>但馬水技</td>
<td>県県</td>
</tr>
<tr>
<td>被びき漁業資源利用調査</td>
<td>平成48～</td>
<td>但馬水技</td>
<td>県県</td>
</tr>
<tr>
<td>新漁業管理制度推進情報提供事業（日本海）</td>
<td>平成9～</td>
<td>但馬水技</td>
<td>受託</td>
</tr>
<tr>
<td>資源評価調査（日本海）</td>
<td>平成12～</td>
<td>但馬水技</td>
<td>受託</td>
</tr>
<tr>
<td>資源管理技術推進事業（日本海）</td>
<td>平成23～</td>
<td>但馬水技</td>
<td>受託</td>
</tr>
<tr>
<td>重要赤潮被害防止対策事業（日本海）</td>
<td>平成20～</td>
<td>但馬水技</td>
<td>受託</td>
</tr>
<tr>
<td>但馬水産加工技術開発試験</td>
<td>平成44～</td>
<td>北部農業・加工流通部</td>
<td>県県</td>
</tr>
<tr>
<td>県県水産物の良質特性の把握及び品質評価技術開発</td>
<td>平成28～30</td>
<td>北部農業・加工流通部</td>
<td>県県</td>
</tr>
</tbody>
</table>

イ 行政依頼事業

<table>
<thead>
<tr>
<th>名称</th>
<th>依頼機関</th>
<th>研究期間</th>
<th>担当</th>
</tr>
</thead>
<tbody>
<tr>
<td>養殖衛生管理体制整備事業</td>
<td>総合農政課</td>
<td>平成54～</td>
<td>水産増殖部、内水面</td>
</tr>
<tr>
<td>水産物安全確保対策事業</td>
<td>水産課</td>
<td>平成8～</td>
<td>水産環境部</td>
</tr>
<tr>
<td>資源管理指針等高度化推進事業対応調査</td>
<td>水産課</td>
<td>平成24～31</td>
<td>但馬水技</td>
</tr>
<tr>
<td>ローカルサーモン養殖振興事業</td>
<td>水産課</td>
<td>平成28～31</td>
<td>北部農業・加工流通部</td>
</tr>
</tbody>
</table>

ウ 民間等受託研究等

<table>
<thead>
<tr>
<th>名称</th>
<th>委託機関</th>
<th>研究期間</th>
<th>担当</th>
</tr>
</thead>
<tbody>
<tr>
<td>日本海西部スワイガニ等調査</td>
<td>一般財団法人漁港漁業推進機構</td>
<td>平成19～20</td>
<td>但馬水技</td>
</tr>
<tr>
<td>楽園型漁場出現調査及び情報提供事業</td>
<td>一般財団法人漁港漁業推進機構</td>
<td>平成22～23</td>
<td>但馬水技</td>
</tr>
<tr>
<td>大型クラゲ調査及び情報提供事業</td>
<td>一般社団法人漁業情報サービスセンター</td>
<td>平成19～20</td>
<td>但馬水技</td>
</tr>
</tbody>
</table>
(2) 成果

ア 研究課題

課題名: 湿田内海重要水族環境調査

1 区分: 県単
2 間: 昭和36年度～
3 担当: 水産環境部（魚住香織・長瀬達章・原田和弘）
4 目的: 湿田内海における重要水族の資源生態と漁場環境を明らかにすることにより、漁業資源の効率的利用や沿岸漁業経営の安定化を図る。

5 成果の要約

(1) 海洋観測調査

大阪湾10定点、紀伊水道8定点で、4、6、8、10、12、2の各月中に、一般海洋気象、水温、塩分、透明度の観測を行った。大阪湾の水温は、4月がやや高め、6、8月が年間並み、10月がやや低め、12月は荒天により欠測、2月はやや低めであった。紀伊水道の水温は、4月がかなり高め、6月がやや低め、8月がかなり高め、10月がかなり低め、12、2月がやや低めであった。

(2) 漁況調査

毎月1回、県下の主要4漁場で聞き取り調査により、漁況情報として、マダイ、マグロ、メイタ、イカ、サワラ、あじ・サマ類、シラス、マグロ、イクラ、いか類等の漁獲状況をとりまとめた。明石海峡周辺や紀伊水道北部では、明石海峡周辺のマグロは、6月まで不漁であったが、7月には回復した。大阪湾～紀伊水道のシラス漁は、前年より少なく傾向にあったが、単価は良好であった。

(3) 重要水族環境調査

ア カタクチイワシの卵稚仔調査

大阪湾10定点、紀伊水道8定点（第1図）において、丸ネットによる水深30m以浅鉛直曳によりカタクチイワシの卵及び稚仔を採集した。大阪湾におけるカタクチイワシ卵・稚仔の出現量は、卵は4月に平年を上回り、6、8月は平年を下回った。稚仔は4、6月と平年並みであったが、8月は平年を下回った。紀伊水道では卵は4月に平年並み、6、8月が平年を下回り、稚仔は4、6月が平年を下回り、6月は平年を上回った。

イ イカナゴシンコ漁況予報

産卵親魚調査、稚仔分布調査結果等から、平成30年度のイカナゴシンコ漁況について、「今漁期のイカナゴシンコ漁は、播磨灘、紀伊水道では平年を下回り、昨年並み、大阪湾では平年を下回り、昨年並み～昨年をやや上回る」と予測した。シンコ漁
課題名 渔場環境保全対策調査研究
1 区分 県単
2 期間 昭和 47 年度～
3 担当 水産環境部（原田和弘・宮原一隆・内田健二）
水産増殖部（小柴貞二）

4 目的
年間を通じて渔場環境の変化を把握し、渔場環境の保全及び渔場の一二次生産力の変化予測等に役立てる。また天候異変や油漬被害等、不測の事態における渔場環境の現況を把握する。

5 成果の要約
（1）試験方法
ア 撮影船渔場環境定期調査
調査船による海洋観測（渔場 19 定点、今年度は定点の変更なし）及び水質分析を毎月 1 回実施した。
イ 大阪湾・紀伊水道渔場環境定期調査
調査船による海洋観測（平成 19 年度から定点を一部変更：大阪湾 10 定点、紀伊水道 8 定点、今年度は定点の変更なし）及び水質分析を実施した。

（2）成果の概要
別記の漁業管理制度推進情報提供事業の漁場定線海洋観測（瀬戸内海）と本調査における撮影船渔場環境定期調査、大阪湾、紀伊水道渔場環境定期調査の結果を合わせ、毎月の渔場環境の現況を取りまとめた（データは資料欄に掲載）。撮影船の DIN 濃度は表、底層とも、概ね平年に比べ低値の値を推移した。特に 10 月は表、底層とも「はなはだ低め」の値であった。
DIP 濃度は表、底層とも年変動が示す月が多かったが、10 月は表、底層とも「かなり低め」であった。表層の溶存酸素量は 4～8 月の表層は低値の値を推移した。6～8 月の底層は、「やや高め」の値を示した。撮影船の北部沿岸では 12～3 月に Eucapnia zodiatus をはじめとする水産類が発生し、同海域の DIN 濃度は低水準で経過した。大阪湾、紀伊水道の栄養塩類では、紀伊水道 6 月の 30m 層の NO₂-N 及び DIP 濃度が「はなはだ及びかなり高い」、10 月の NH₃-N 濃度が全観測層で「かなり～はなはだ高い」値を示したのが特徴的であった（定点を変更した平成 19～28 年度平均値との比較）。

6 成果の取り扱い
（1）成果の普及
インターネットホームページ又は FAX 通信により毎月 1 回漁業者・関係団体等へ海況情報を提供した。
（2）成果の発表
漁場環境情報（2904 号～3003 号）
平成 29 年度瀬戸内海ブロック漁場定線観測等担当者会議録（抄）。

課題名 新漁業管理制度推進情報提供事業（瀬戸内海）
1 区分 受託
2 期間 平成 9 年度～
3 担当 水産環境部（原田和弘・宮原一隆・内田健二）
水産増殖部（小柴貞二）

4 目的
漁場環境調査や市場調査等により、漁獲対象資源の動向等、兵庫県資源管理方針の見直し等のために必要なデータを収集する。

5 成果の要約
（1）漁況情報収集（定線調査、定置観測）
調査船による浅海定線ナセコ線の海洋観測（渔場 19 定点、今年度は定点の変更なし）及び明石市二見町南二見において定置観測を実施した。
定置観測では漁場定線海洋観測結果と、別記の漁場環境保全対策調査研究（撮影船渔場環境定期調査及び大阪湾・紀伊水道渔場環境定期調査）の結果を合わせ、毎月の渔場環境の現況を取りまとめた（データは資料欄に掲載）。撮影船の水温は、9 月までは平年に比べ高傾向で推移した。特に、表層では 6～7 月に「はなはだ高め」の値を示し、10 月以降は平年並み又は低傾向で推移した。7～10 月の塩分は高傾向、それ以外の月は低で推移した。5～12 月の透明度は「かなり高め」～「はなはだ高め」の値を示した。
明石市二見町における水温（午前 9 時）は、1997～2016 年の平均値に比べ、4～8 月は概ね高め、11 月以降は低めで推移した。また、観測施設の整備再編により定置観測は、2018 年 2 月から 8 定点の情報を提供している。

6 成果の取り扱い
（1）成果の普及
インターネットホームページ又は FAX 通信により毎月 1 回漁業者・関係団体等へ海況情報を提供した。
（2）成果の発表
漁業環境情報（2904 号～3003 号）
平成 29 年度瀬戸内海ブロック漁場定線観測等担当者会議録（抄）。
課題名：資源評価調査（瀬戸内海）

1 区 分 受託

2 期 間 平成12年度～

3 担 当 水産環境部（長瀬達幸・西川哲也・魚住香織・原田和弘・宮原一隆）

4 目 的
水産庁の委託により、我が国周辺漁業資源の適切な保存と合理的・持続的な利用を図るため、国立研究開発法人 水産研究・教育機構や他府県の水産研究所機関とともに、資源評価・動向予測・最適管理手法・漁況予測の検討に必要な基礎資料を整備する。

5 成果の要約

(1) 試験方法
国立研究開発法人 水産研究・教育機構 瀬戸内海区水産研究所と作成した調査指針に基づき、マダイ・ヒラメ・カタクチイワシ・マイワシ・トラフグ・サワラ・イカナゴの各魚種について漁場別漁獲状況調査、生物情報収集調査、新規加入量調査等を実施した。また、漁場形成・漁場況予測事業として海洋観測やカタクチイワシ・マイワシの卵稚仔調査を実施した。

(2) 成果の概要
ア 調査結果は、国立研究開発法人 水産研究・教育機構、各都道府県水産研究所、漁業情報サービスセンターで構成するネットワークシステム（FRESI）により、オンラインデータベース化された。

イ 国（水産庁）において、資源評価対象種ごとに「資源評価票」が策定・公表され、資源の管理が行われる。

6 成果の取り扱い

(1) 成果の普及
地域に密着した情報は、水産技術センターだより等を通じて関係漁業者・団体に提供した。

(2) 成果の発表
原則として、国（水産庁）により公表される。
課題名 重要赤潮被害防止対策事業（瀬戸内海）

1 区 分 受託
2 期 間 平成 16 年度～
3 担 当 水産環境部（宮原一隆・原田和弘）
4 目 的 瀬戸内海東部海域において、赤潮発生前の夏季及びノリ繁殖期の冬季に、関係府県（香川、徳島、岡山、大阪）・瀬戸内海区水産研究所と連携して広域共同調査を実施し、栄養塩濃度、有害赤潮種の動態等を広域かつ経時的に把握し、本海域における有害赤潮種出現特性等を明らかにすること。また、得られた情報を迅速に漁業者等へ提供することによって、赤潮等による漁業被害の未然防止を図る。

5 成果の要約
(1) 試験方法
ア 夏季調査
調査地域：播磨灘北部 6 定点（第 1 図）
調査時期：6～8 月（計 8 回）
調査項目：気象、海象、
水質（水温、塩分、透明度、溶存酸素、DIN、PO₄-P、SiO₂-Si、クロロフィル a）、
有害プランクトン細胞密度

イ 冬季調査
調査地域：播磨灘北部 12 定点（第 2 図）
調査時期：11～2 月（月 1～3 回、計 8 回）
調査項目：気象、海象、
水質（水温、塩分、透明度、DIN、PO₄-P、SiO₂-Si）、ノリの色落ち原因プランクトン細胞密度

(2) 成果の概要
今年の主な有害赤潮種の出現動向は以下のとおりであった。
ア 夏季調査
Chattonella antiqua 及び Chattonella marina: 7 月に播磨灘北部で赤潮を形成した。小型珪藻類との混合赤潮として初認され、珪藻類の密度が低下した期間・場所で増殖が確認された（最高細胞数 2 種合計 1,084 cells/mL）。

イ 冬季調査
Coscinodiscus wailesii: 漁期を通じて確認されれたが、発生密度は低かった。
Eucampia zodiacus: 11～12 月と 2～3 月に播磨灘北部で高密度化した（最高細胞数はそれぞれ 1,331、681 cells/mL）。11～12 月は細胞径回復前の小型個体が主体であった。

また、夏季調査・冬季調査の結果を解析し、赤潮発生予察技術（統計モデル）を開発した。
課題名　資源管理体制高度化推進事業（瀬戸内海）
1 区分　受託
2 期間　平成23年度～
3 担当　水産環境部（長濱達幸・西川哲也・魚住宣義）
4 目的
（1）兵庫県瀬戸内海側において重要な漁業種類となっているヒラメ・かれい類・うしじら類・マグロを対象に、その資源動向や資源特性を推定する。
（2）船びき網漁業の主要漁獲対象魚種であるイカナゴ稚仔の海域別の分布・成長状況を明らかにする。
5 成果の要約
（1）資源動向調査
ヒラメ・かれい類を対象として漁獲統計調査や代替市場における市場調査を実施した。
近年のヒラメの漁獲量は120 トン前後で、増減を繰り返しながら傾向を示し、直近の漁獲統計（2015年）では88 トンとなった。また、瀬戸内海区水産研究所から示されている資源評価報告書（ヒラメ瀬戸内海系群）では、平成27年度の「高廃・増加」から、平成28年度には「中位・横ばい」、平成29年度には「中位・減少」と資源動向に変化の兆しが見られる。
兵庫県海域での漁獲動向も「中位・減少」傾向にあると推定されるので、今後の資源動向に注意が必要である。
かれい類ではマグロレイの漁獲量は、1990年代後半に急激に減少しており、2000年代に入ってからは「低位・横ばい→減少」の傾向が続いている。イカナゴレイは漁獲量の年変動が大きいものの、資源動向としては「中位・横ばい→漸減」と推測された。
うしじら類については漁獲統計を整理した結果、漁獲量が多いのは播磨灘、大阪湾海域であった。漁獲率に見ると、小型体びに網では冬季〜春季に、刺網では春季〜夏季に多い傾向があった。
コウライアカシタビラメの生物計測調査からは、全長22〜27cmでは雄の比率が、全長28cm以上では雌の比率が高い傾向にあった。雌は全長22cm以上で、雌は30cm以上で成熟する傾向にあった。耳石による年齢検定（薄層切片）からは、雌は全長22〜30cmで1〜6歳魚、雄は22〜40cmで1〜6歳魚が認められた。
マグロについては、明石市東見沖で捕獲し試験操作を実施した。試験操作の結果、本年のCPUE（一尾網当たりの摘取個体数）は6月の43個体/網から、7月には280個体/網へ急激に増加した。また、7月に採取された標本の大部分が体重60gより小型の個体であった。明石海峡周辺部を主漁場とする漁協からの聴取調査によると、昨年冬季〜本年春季にかけてのマグロの水揚げは前年を下回ることが多く、7月以降によく前年並みの水揚げになった。このこと
とから、本年は稚幼ダイの漁獲加入時期が遅くなり、本格的な水揚げが7月以降にずれ込んだのではないかと考えられた。
（2）イカナゴ稚仔調査
イカナゴ稚仔の分布・成長状況を明らかにするため、平成29年5〜11月に夏眠覚察調査を、平成30年1月17、19、22日に京伊水道、大阪湾、播磨灘で調査を実施した。観察の採集は文鎮漁場（10分）で、稚仔の採集は、ボンネット（口径60 cm）による表層から底層までの往復傾斜曳きで行った。
夏眠覚察調査では、調査期間を通じての平均採集密度は5.0尾/曳を下回り、低い値で推移した。
稚仔調査では、他事業予定で実施した結果も含めて整理した結果、1地点当たりの平均採集尾数は、播磨灘7.2尾（昨年1.1尾）、大阪湾6.3尾（昨年2.5尾）、紀伊水道4.4尾（昨年0.3尾）であった。大阪湾は昨年をやや上回ったものの、各海域とも分布量は低水準であった。
全長組成の平均値は、播磨灘9.0mm（昨年8.2mm）、大阪湾9.9mm（昨年7.5mm）、紀伊水道10.9mm（昨年9.5mm）で、3海域とも昨年値を上回った。
6 成果の取り扱い
（1）成果の普及
イカナゴの調査結果は「イカナゴ稚仔分布調査結果、イカナゴシソヨ漁況予報」として当センターホームページに掲載するとともに、FAXを通じて漁協等に関係機関に情報提供を行った。
（2）成果の発表
平成29年度資源管理体制高度化推進事業資源調査結果報告書。
及び育波沖は大阪湾からの影響が大きく、二見沖は大阪湾からの影響に加えて、陸水の影響も受けていることがわかった。また、3地点のうちでは育波沖が大阪湾からの影響が最も大きいことが判明した。

6 成果の取り扱い

(1) 成果の普及
なし。

(2) 成果の発表
平成29年度漁場環境・生物多様性保全総合対策事業のうち赤潮・資源水面積対策推進事業「漁場生産力向上のための漁場改善実証試験」成果報告書。

ノリ、ワカメ養殖場における栄養塩供給行動実証試験事例集（水産庁補助「漁場生産力向上のための漁場改善実証試験」事業成果ダイジェスト）。

5 成果の要約

(1) 大阪湾から播磨灘への栄養塩供給に関する調査
概ね大阪湾奥から水深20m以浅の範囲を年間を通じて成層状態にあり、神戸市須磨沖の付近に塩分フロントが形成されていると考えられた。増水時など陸水の影響が大きい場合や、鉛直混合層でも植物プランクトンの発生量が少ない場合は、大阪湾奥表層からの栄養塩供給が明石海峡部に直接影響していると考えられるが、成層期、及び鉛直混合期の植物プランクトンが大量発生している場合の供給量は少ないと考えられた。

大阪湾から明石海峡を経て播磨灘中央部に至るライン上定点のDIN濃度は、概ね大阪湾側で高い傾向が認められた。明石海峡部のDIN濃度は、各層とも濃度に大きな差はなく、鉛直混合が盛んなことが明確に表れていた。明石海峡部では年間を通じて混合層にとどまり、大阪湾や播磨灘側でDIN濃度が低下した場合にも、潮汐流に伴って近縁海域の各層面子海に流入する水の混合により、ある程度のDIN濃度が保持されていると考えられた。

淡路市育波沖のノリ漁場で、硝酸塩センサーを用いて連続観測した結果、水温と塩分及び硝酸塩センサー値が上昇するタイミングには同調傾向が認められた。東方分速及び北方分速が負の値の最大値を示した直後にそれらの値は上昇する傾向があった。また、観測期間中の明石海峡部の水温、塩分及びNO₃-N濃度は観測点東西及び南北の海域よりも高い傾向にあった。これらの結果は明石海峡部または大阪湾西部の水が、上げ潮時に育波沖のノリ漁場に流入してきたことを示したものと考えられた。

(2) 播磨灘北東部の栄養塩動態に関するモデルシミュレーション

当センサーで連続観測を実施した播磨灘北東部の二見沖、鹿ノ瀬、育波沖の各ノリ漁場における大阪湾からの栄養塩供給に関するモデル計算の結果、鹿ノ瀬
課題名 豊かな瀬戸内海再生調査事業

1 区分 県外及び一部その他受託

2 期間 平成27年度～31年度

3 担当 水産環境部（反田 實・西川哲也・原田和弘・大石賢哉・五利江重昭・宮原一隆・魚住香織）水産増殖部（二羽恭介・谷田圭亮・小柴貴二）

4 目的 イカナゴ漁獲量と栄養塩との関連性の解明を進めるほか、関連調査としてノリ漁場の栄養塩環境調査を実施し、瀬戸内海を豊かな海へ再生する一助とする。

5 成果の要約

（1）イカナゴの飼生物関連調査

ア イカナゴ飼料環境調査、イカナゴ生物測定・胃内容物調査、夏眠時期調査を通じて、ボトムアップ的な視点から、栄養塩からイカナゴまでの生態構造と現況を明らかにした。

イ 夏眠期（7月下旬）のイカナゴの肥満度が著しいに低下していることを明らかにし、飼料環境の悪化がイカナゴの夏眠期の生残率や夏眠明けの産卵に影響を及ぼしている可能性を示した。

（2）統計、モデル検討調査

ア イカナゴ観察データを収集、分析するとともに、イカナゴ生態系モデルの構築からイカナゴ栄養塩環境との関係を明らかにした。

イ イカナゴ生態系モデルをラグランジュ（イカナゴを粒子で模擬）－オイラー（栄養塩、プランクトン等はメッシュで取り扱う）結合モデルとし、それを流動モデル上で駆動させるシミュレーション解析で構築した（モデルの構築は日本海洋生物研究所へ委託）。

（3）ノリ漁場環境調査

ア 海苔養殖漁場及びその周辺海域における栄養塩環境を把握した。

イ 播磨灘ではEucampia zodiacusをはじめとする珪藻類の発生により、北西部沿岸海域で12月以降溶存態無機窒素（DIN）濃度の低下した状態が続いた。大阪湾では2月下旬以降小型珪藻の発生等により、DIN濃度が低下した。

6 成果の取り扱い

（1）成果の普及

ア 平成29年度豊かな瀬戸内海の再生に係る連絡協議会及び平成29年度第1回豊かな海づくりに係る検討会において、本事業の概要を紹介した。

イ ノリ漁場環境調査結果を「栄養塩潮情報」の名称を「ノリ養殖環境速報」に変更し、11〜3月にかけて信ごとにホームページを通じて漁業者に情報提供した。

（2）成果の発表
課題名 栄養塩類等の水質環境が低次生産生物に及ぼす影響調査
1 区分 受託
2 期間 平成28年度〜29年度
3 担当 水産環境部（宮原一隆・原田和弘）
4 目的
近年、瀬戸内海海域では、栄養塩化による水産資源への影響が懸念されている。本海域の低次生物生産に関しては、生物量（現存量）のデータは整備されておらず、そのの、生産速度や生産効率に関する知見は断片的であり、生物生産の機構や変動については明らかになっていない。
そこで、海域の低次生産に関する知見を蓄積するとともに、基礎生産の簡易測定技術の開発を進めることにより、水産資源の増殖・適正管理を図る。
5 成果の要約
1）試験方法
ア 現場観測調査と低次生物量の把握
調査海域：播磨灘北部6定点（第1図）
調査時期：5〜1月（計5回）
調査項目：気象、気象、水質（水温、塩分、透明度、溶存酸素、光量子量、DIN、栄養塩）など、植物プランクトン細胞数、動物プランクトン細胞数
イ 基礎生産簡易測定技術の開発
調査海域：播磨灘北部6定点（第1図）
調査時期：5〜1月（計5回）
調査項目：光合成活性測定（パルス変調型光合成活性測定装置（PAM）による測定、定点）、基礎生産量測定（膜圧式法による酸素曝露法、H2とH10）

2）成果の要約
ア 現場観測調査と低次生物量の把握
採取したいずれの試水においても、PAM測定の結果は光合成曲線に適合することができた。表層における光合成ポテンシャルは、植物プランクトンの現存量が大きくかつ光合成曲線のパラメータが大きい沿岸域で高く、沖合域で低い傾向があると考えられた。
イ 基礎生産簡易測定技術の開発
2年半の結果を総合的にまとめ、PAM測定による基礎生産測定技術を実用化した。
異なる測定法（明暗法、非均質法、PAM法）の間に一定の関係性が確認されたことから、播磨灘海域において基礎生産速度の変動を代替的に推定する方法を検討した。基礎生産速度は、表層及び中層のChl.a濃度と強く相関していた。また、本調査で基礎生産を測定した定点は比較的河川水の影響の少ない海域内に位置しているため、透明度が内部生産（Chl.a濃度）とよく相関していた。播磨灘海域における基礎生産速度の長期間変動については、基礎生産生物の現存量（Chl.a濃度、特に表層Chl.a濃度）を指標として経年変化を議論することが可能であると考えられた。

拡張的な解析の結果、低次生産を担う生物の種類成や群集構成、また生産構造が変化している可能性があることから、今後は低次生産の量的な解析だけではなく、質的な変化の詳細についても明らかにしていく必要があると考えられた。

6 成果の取り扱い
(1) 成果の普及
なし。
(2) 成果の発表
平成29年度赤潮・栄養素水塊渦巻災害対策事業総合調査会、平成29年度赤潮・栄養素水塊渦巻災害対策事業報告書で成果を発表した。
また、2017年度水産海洋学会研究発表大会で成果の一部を発表した。
課題名 「鹿ノ瀬」海域の漁場機能の再評価と漁場造成

1 区分 国庫助成
2 期間 平成28・29年度
3 担当 水産環境部（五利江重昭・西川哲也）
4 目的
(1) 鹿ノ瀬の海底地形、底質などを把握する。
(2) 鹿ノ瀬と沖ノ瀬の一部、及び造成区の底生生物や
周辺海域のプランクトンの出現状況を明らかにする。
(3) 鹿ノ瀬と沖ノ瀬の一部、及び周辺海域の水質環境
を把握する。
(4) 鹿ノ瀬の海底地形や底質の変化の有無を明らかにする。
また鹿ノ瀬と造成区が持つ漁場機能や漁場特性、生物生産特性等を明らかにする。

第1図 調査海域（鹿ノ瀬・沖ノ瀬・造成区）

5 成果の要約
(1) 海底面調査
ア 海底地形
年度の調査結果を比べ、鹿ノ瀬の形状は大きく変化
していないが、鹿ノ瀬の北東側では水深が若干深く
なって、やや浸食する傾向が見られた。また峰部周
辺では最深部が3m程度浅くなり、瀬の峰部がやや
北側に移動している。
鹿ノ瀬は、深度30m附近にある基盤の上に砂が
堆積してできた「無」であると思定された。
イ 底質
鹿ノ瀬は中砂が主体で、シルト粘土分はほとん
どの見られなかった。峰の北側では中砂から粗砂・砂
礫に、峰の南側では粗砂や砂礫から粗砂や中砂に変
化している箇所があった。また北西側では細砂の領
域が東に拡大し、細粒化する傾向が見られた。
造成区では、鹿ノ瀬に比較して粘土分が多く
含まれていた。

ウ 土砂供給源
鹿ノ瀬を構成する砂の由来は、明石海峡部と推定
された。
(2) 水環境調査
9月の鹿ノ瀬、造成区、及び沖ノ瀬の底層水温は、
それぞれ26.9〜27.7℃、27.9〜28.1℃、及び24.7℃
であった。また底層塩分は、31.9〜32.3、31.6〜31.8、
及び33.1であった。温水、塩分は上層から下層まで、
概ね一様な分布を示した。
鹿ノ瀬の流れは、新に沿った往復流が卓越しており、
峰の南部で速い流速を示した。造成区も海岸線に沿っ
た往復流を示すが、東流に比べ西流の出現が多くなっ
ていた。
(3) 生物調査
プランクトンは、鹿ノ瀬と周辺海域で出現量が顕著
な差は見られなかった。
底生生物相は、造成区が最も豊富であり、次いで鹿
ノ瀬の峰の南部海域が多く、鹿ノ瀬周辺や沖の瀬など、
中砂域の底生生物相は乏しかった。
(4) 鹿ノ瀬の生態系の再評価
鹿ノ瀬の地形・底質環境は、約30年前と比較して
大きく変化しておらず、イカナゴの産卵場・夏眠場と
して良好な底質環境を維持していたものの、鹿ノ瀬
北西側では細砂や泥分が増加する傾向が見られ、今
後留意する必要があると思われた。
(5) 鹿ノ瀬の漁場機能と漁場特性
鹿ノ瀬周辺での漁獲量は近年低迷しており、その要
因としてイカナゴの減少が大きいと考えられていた。
鹿ノ瀬は、ベントス食性・雑食性の魚類の飼場・隱
れ家としての機能よりも、多くの魚介類の餌となるイ
カナゴの産卵・育成の場として重要で、イカナゴを底
辺とする生態系が構築され、イカナゴを餌として利用
する生物（魚類）が増殖する漁場であると思われた。
(6) 陸域由来の土砂を用いた漁場整備手法及び低質改
善効果の定量化の検討
陸域由来の土砂を用いて、漁場整備する際には、底
質の消失度（ばらつき）が底生生物の生息量に大きく
関与している可能性が示唆され、目的に応じて、底質
や地形に多様性を持たせることが重要と考えられた。

6 成果の取扱い
(1) 成果の普及
調査結果は、関係漁業者団体（鹿ノ瀬会）に説
明した。
(2) 成果の発表
平成29年度鹿ノ瀬海域の漁場機能の再評価と漁場
造成に関する調査業務報告書
課題名 増殖推進対策調査研究

1 区分 県単
2 期間 平成25年度～
3 担当 水産増殖部（二羽恭介・中村行延・安信秀樹・谷田圭矢・小栗貞二・金尾博和）
内水面漁業センター（増田惠一）

4 目的
県内のノリ養殖業に対する指導、魚病に関する調査指
導及び内水面養殖地の水質調査を行うとともに、新たな
増殖技術開発に向けた研究調査を行うことを目的と
する。

5 成果の要約
(1) ノリ養殖試験指導
ノリ養殖期間中の巡回指導、ノリ芽育成調査につ
いて計画通り実施し、得られたデータに基づき情報
提供等を行った。
平成29年度期は、水温が平年（過去10年平均）
より低めで推移したため、ノリ芽の生理障害や目立
った病害の発生はみられず、生育は順調であった。
また、12月以降、播磨灘北部沿岸海域でEucampia
zodiacaをはじめとする塩藻類の大量発生がみら
れたが、塩全体への分布拡大はなく、栄養塩低下に
よる色調低下は限定的であったが、12～2月にかけ
ての降雨が平年より少なくため栄養塩は減じ、徐々に色調低下がみられた。共販份数は昨年度を約
2億6千万枚上回り約17億枚、共販金額は約19億2
千万円以上約187億円となった。
(2) 魚病対策試験調査
クルマエビに発生するWD（ホワイトスポット病、
旧略称：PAV）の蔓延防止対策として、塩藻生産に用
いる親エビや生産した塩藻をLamp法により検査し
た。親エビの検査部位は産卵後の受精糸、塩藻の検
査は24時間以上飼育出した塩藻の貯とした。
平成29年5月15日～7月10日に109ロット（219
尾）の親エビのWD検査を行った結果、35ロットに
陽性反応が認められた。なお、陽性が認められたの
は徳島県産が18ロット、愛知県産が17ロットであっ
た。また、6月20日・8月1日に行った飼育前の
親エビの検査では、15ロットを検査した結果、6ロ
ットで陽性が確認された。
キジハタのVNN（ウイルス性神経障害症）蔓延防
止対策として飼育中の親魚を対象にLamp法により
検査した。検査はカニュレーションにより採取外
の卵と精子を使用した。
平成29年6月13日と6月15日にサンプリングし
た親魚のキジハタ118尾のウイルス検査を実施した
ところ、雄15尾で陽性が確認された。
ヒラメのVNN（ウイルス性神経障害症）蔓延防止
対策として塩藻生産施設内に親魚を導入する際に親
魚の一部をLamp法により検査した。検査部位は視神
経とした。
平成29年11月14日にサンプリングした親魚飼育
のヒラメ6尾（1頭）のウイルス検査を実施し
たところ陰性であった。

(3) 養殖地区水質水温調査
水量測定は、自動流速計の設置されている大池と
小池の2調査地点で実施した。水量測定は、水温と
pHについて、水質調査地点を含む5地点で毎月1回
実施した。年間を通じ養殖を問題なく継続できる水
量、水質を維持していた。（資料に記載）

(4) アサリ母貝場飼料環境調査
種苗生産に用いるアサリ母貝を蓄下している海域
の飼料環境を把握するため、毎月1回海水のクロロフィルaを測定した。その結果、平均クロロフィ
ルaは7.66μg/L（2.98～11.88）で、非常に良好な成長
を示したが、11月には産卵後2週間前にクロロフィルaの値が最低値を示しかい、死亡個体が目立
った。

(5) 新規増殖技術開発
ア カキ養殖に関する技術指導
カキ漁場環境情報の提供：関係機関に対し、養殖
漁場における飼料環境について、「カキ漁場環境情報」
として情報提供を行った。
シングルシード養殖試験：種苗確保とシングルシ
ード養殖の技術指導を目的とし、現地での浮遊幼生
調査及び養殖技術指導を行った。
イ ワカメ養殖に関する技術指導
当センターとワカメ種苗生産現場で、遊走子取
り、雌雄配列体の分離、配列体の培養方法等に関
する技術指導を行った。
ウ 養殖カキの選抜育種試験
選抜の大きな方向に選抜育種を継続したP4世
代と、明石市二見地先で天然採苗を行った種苗（対
照）を用い、赤穂市移殖地先カキ漁場で養殖試験
を実施したところ、殻幅／殻高は選抜群で0.355、
天然採苗群で0.315となり、養殖漁場における選
抜効果の発現が確認された。一方、世代を経るこ
とによる浮遊幼生期のヘン死率の上昇や、殻幅が
大きくなりすぎることによる商品価値の低下など、
集団選抜育種を行う上での新たな問題点が明らか
となった。
エ 養殖ノリのイオンビーム照射試験
養殖ノリにイオンビームを照射し、高水温下で
選抜した株を用いて、水温20℃から本張りを開始
した。1週間後までは順調に生長したが、酸處理
後に葉状体の伸長鈍化が見られた。
オニニマス全3倍体作出の安定化に関する試験
PCR によるサケ科魚類の遺伝的雌雄判別手法を活用し、飼育過程での雌雄子除去することにより、従来行われていた紫外線照射による精子不活化を行わない全3倍体作出技術の確立を目的とする。平成27年度に生産し、平成28年度に仮オースに住したニマスを明らかに普通発生群のうち128個体についてPCRにより遺伝的雌雄判別を実施した結果、56個体が遺伝的メスであることを確認した。
遺伝的メスでない個体を除外し、現在全長約30cmで、飼育を継続中。

6 成果の取り扱い
(1) 成果の普及
(1) ノリ養殖試験指導
情報提供35件(全省124件、地区協議会11件)、
指導53件(巡回指導44件、地区協議会9件)。
(2) 魚病対策試験調査
クロメビに関しては検査結果をひょうご県豊かな
海づくり協会津名事業場に報告し、ウイルス陽性の
親エビを除いて養殖生産を実施し、WSDの発生を
防止した。キジメンタについては検査結果をひょうご
豊かな海づくり協会但馬栽培漁業センターに報告し、
ウイルス陽性の親魚を除いて養殖生産を実施し、
VNNの発生を防ごうとした。ヒラメについては検査結果
をひょうご豊かな海づくり協会但馬栽培漁業センタ
ーに報告し、VNNの発生防止に寄与した。
(3) 養殖地区水量水質調査
兵庫県ニマス養殖組合に情報提供した。
(4) アサリ母場飼育環境調査
なし。
(5) 新規増殖殖技術開発
ア カキ養殖に関する技術指導
カキ漬場環境情報の提供 16件、浮遊幼生調査16
回、養殖技術指導14回。
(2) 成果の発表
(1) ノリ養殖試験指導
全国ノリ研究会、業績情報交換会、海苔タイム
ス2件。
(2) 魚病対策試験調査
なし。
(3) 養殖地区水量水質調査
兵庫県ニマス養殖組合講習会で公表した。
(4) アサリ母場飼育環境調査
なし。
(5) 新規増殖殖技術開発
エ 養殖ノリのイオンビーム照射試験
なし。

6 成果の取扱い
(1) 成果の普及
なし。
(2) 成果の発表
なし。
課題名 ワカメの遺伝資源収集・特性把握および種苗生産の定着化

1 区 分 県単
2 期 間 平成 29 年度～31 年度
3 担 当 水産増殖部（二羽浩介・谷田圭亮）

4 目 的
ワカメの遺伝的改良を視野に入れて、養殖ワカメや野生ワカメなど育種素材を収集し遺伝的特性を把握するとともに、ワカメ種苗の安定生産を目指して、温暖化に対応した種苗生産技術の現場への定着化試験を行う。

5 成果の要約
(1) 遺伝的に均一なワカメ配偶体の分離
 ア 県内の養殖現場で養殖されているワカメから雌雄配偶体を分離した。
 イ 分離した雌雄配偶体をそれぞれ保存培養した。
(2) 野外試験によるワカメ種苗特性把握
 ア 県内の養殖現場で養殖されているワカメから雌雄配偶体を分離した。
 イ 分離した配偶体を使ってワカメ種苗を生産し、野外試験に取り組むとともに、養殖ワカメの遺伝的差異を把握するため DNA 解析を行った。

6 成果の取扱い
(1) 成果の普及
 南あわじ漁協、江井ヶ島漁協、神戸市漁協に種苗生産の研修会と技術指導を行い、各漁協への技術移転を進め。
(2) 成果の発表
 なし。
課題名 アユ資源維持増強対策調査研究
1 区分 県単
2 期間 平成22年度～
3 担当 内水面漁業センター（増田恵一）
4 目的
(1) アユ冷水病の保菌検査: 河川における冷水病蔓延
防止対策の一つとして、冷水病菌の県内河川への拡
散を防止する目的で、放流用アユ種苗（稚魚湖産、
海産、人工産）の冷水病菌の保菌検査を実施する。
(2) 新たな感染症の保菌検査: 冷水病以上の被害発生
が懸念されるEdwardsiella ictaluri（エドワジ
ェラ・イクタルリ）症や異型細胞性鰭病が近年新た
に確認されたため、県内持込を軽減する目的で、放
流用アユ種苗の保菌検査を実施する。
(3) 天然アユの増殖手法等の開発: 漁業漁業活動に向
けての積極的な対応として、天然アユの増殖手法開
発や、無菌性・耐病性を有するアユの種苗生産のた
め、遺伝子解析を実施する。
5 成果の要約
(1) 試験方法
ア 冷水病菌の保菌検査：可能な限り30尾を1検体
として検査を行った。その場合、10尾のアユの鰭
をプールしたものを1プールサンプルとした。これ
らからChleex 100を用いてDNAを抽出し、PCR検
査を行った。結果はすみやかにFAXで各漁協等に通
知した。
イ 新たな感染症の保菌検査: 冷水病菌保菌検査に用
いたサンプルを対象にEdwardsiella ictaluri（エ
ドワジエラ・イクタルリ）症の保菌検査を行った。
検体の胃腸を液体培地に入れ、24時間以上培養し
たのちDNAを抽出し、PCR検査を行った。また、本
年度から新しいアユのウィルス病である異型細胞
性鰭病についても、PCR検査を行った。結果はすみ
やかにFAXで各漁協等に通知した。
ウ 天然アユの増殖手法等の開発: 漁業漁業活動用、
種苗センターで生産された放流用種苗からDNAを
抽出し、RAPD法によりDNA解析を行った。
(2) 成果の概要
ア 冷水病菌の保菌検査: アユ冷水病の保菌検査を
14件実施した。そのうち陽性は8件（海産2件、人
工産6件）であった。結果は迅速に当該河川漁業協
同組合に報告した。漁協はその結果を検討し、業者
選定、種苗の処置等を行い、冷水病原因菌の浸入防
止のための対策資料とした。
イ 新たな感染症の保菌検査: Edwardsiella ictaluri
（エドワジエラ・イクタルリ）症の保菌
検査を14件実施した。そのうち陽性は2件（人工産
2件）であった。ウィルス性の異型細胞性鰭病の
検査も14件実施した。そのうち陽性は2件（湖産
1件、海産1件）であった。結果は迅速に当該河川
漁業協同組合に報告した。
ウ 天然アユの増殖手法等の開発: 持保川漁協あゆ種
苗センターで育てられたアユ種苗の尾鰭からDNA
を抽出し、精製し、プライマーOPA1、OPA11及びOPD3
を用いてRAPD法によりDNA解析を行った。変異の
認められた泳動バンドはOPA1で10本（A～J）、OPA11
で9本（A～I）、OPD3で6本（A～F）であった。バンド
出現頻度を海産種苗と人工産種苗間で比較すると
OPA1～IIで海産0%人工産17.4%、OPA-Jで海産
0%人工産21.7%、OPA11～IIで海産0%人工産21.2%
と差が認められた。また、バンド出現頻度を冷水病
陰性群と陽性群で比較するとOPD3-Fで陰性17.4%
陽性0%と差が認められた。これらは、放流魚の追
跡や、冷水病耐性アユの選育を行う上で有効な遺伝
子マーカーになりうると考えられた。
6 成果の取り扱い
(1) 成果の普及
県下各内水面漁協等にリアルタイムで情報提供す
るとともに、県下全体のアユ増殖指針とするため、県
内水面漁連に情報提供した。
(2) 成果の発表
近畿中国国立ブロック内水酸魚類防疫試験会。
課題名 サクラマス・サツキマスの生態の解明

1 区分 県単

2 期間 平成29年度～33年度

3 担当 内水面漁業センター（増田恵一）

4 目的

サクラマス（ヤマメ降海型）及びサツキマス（アマゴ降海型）は、近年、漁獲対象としてだけではなく、遊漁対象として人気が高まっている。しかし、県内のサクラマス及びサツキマスについての知見はほとんど無く、増殖措置が立てにくい状況にある。

県内のサクラマス及びサツキマスについて、再生産をするか、陸封型との交配はあるか、陸封型とは別に放流をする必要があるか、などの疑問に答えるための情報を得ることを目的とする。

5 成果の要約

(1)アンケート調査

県下内水面漁業組合のうち10組合から回答を得た。流域に都市部を含む河川及び放流量が多い河川ではサケ科魚類を対象とする遊漁者が増加しているという回答を得たが、それ以外の特に山間部河川では減少しているという回答を得た。分布に関しては、アマゴ、ヤマメが上流部、サツキマス、サクラマスが中流から下流部という回答が多かったが、かつてはサツキマス、サクラマスが上流部まで週上していたという回答もあり、分布及び産卵場の変化が観察された。

(2)遺伝子解析

遊漁者の協力により収集した70個体（アマゴ14個体、ヤマメ52個体、サクラマス4個体）の尾鰭からDNAを抽出、精製し、プライマーOPAI1、OPB5、OPD5及びP81P91を用いてRAPD法によりDNA解析を行った。変異の認められた泳動バンドはOPAI1で5本、OPB5で11本、OPD5で8本、P81P91で3本であった。

6 成果の取扱い

(1)成果の普及

なし。

(2)成果の発表

なし。
課題名 但馬沖合・沿岸資源有効利用調査
1 区分 県単
2 期間 昭和43年度～
3 担当 但馬水産技術センター（鈴木雅己・岡本繁好）
4 目的 但馬海域のみならず日本海全体の浮魚類・イカ類の漁況及び漁況に関する情報を収集・分析し、漁業者への情報提供を行うことにより、但馬海域における漁業漁業の振興に寄与する。また、漁獲圏の増大により天然資源の減少が危惧されているイワガキについて、天然採苗条件を明らかにすることで繁殖による安定供給を推進し、沿岸漁業の経営強化に寄与する。
5 成果の要約
(1) 試験方法
ア イカ類漁況調査
聞き取りと現地確認による漁況情報の収集を行うとともに、県下の日別魚種別漁業種類別漁獲量を集計した。また、日本海各県の漁況情報を収集した。
イ ソデイカ漁況調査
稚イカ生産時期の海洋環境情報の収集と解析、日本海データ同化モデル（日本海区水産研究所・JUDE）を活用した魚場条件の抽出及び市場調査等による漁獲水準調査から、ソデイカの来遊資源水準と魚場分布を予測した。
ウ 但馬定点海洋観測
調査船「たじま」による海洋観測（但馬沿岸9点、第1回参照）を行った。
エ イワガキ天然採苗調査
イワガキの天然採苗に適した条件を明らかにするため、新温泉町居組港周辺において浮遊幼生調査と採苗調査を実施した。
(2) 成果の概要
ア イカ類漁況調査
スルメイカ、ケンサキイカ、（しばいか）、ソデイカ等の漁獲状況を取りまとめ、「漁況速報」として関係漁協等に情報提供した。
イ ソデイカ漁況調査
日本海ソデイカ漁況情報として、長期及び中期予報を作成するとともに、漁期終了後に今漁期の漁況を総括し、漁況予報の的中精度を検証した。
ウ 但馬定点海洋観測
但馬沿岸の平成30年3月の表層水深は13.0℃（平均差1.4℃：平均値は平成22年～平成28年の平均）であり、かなり高めであった。
エ イワガキ天然採苗調査
浮遊幼生調査は図2に示した10地点で8月3日から9月27日にかけて10回実施した。小型幼生は8月17日、9月20日及び9月27日に多く出現し、9月20日には1,572個体/㎡採取された。成熟幼生は9月に多く出現し、9月14日の調査では33.6個体/㎡採取された。調査期間中の地点別平均採苗数をみると、小型幼生は地点4、6、7、8、9、10で200個体/㎡以上、成熟幼生は地点4、5、6、9で10個体/㎡以上採取された。また、成熟幼生は、表層から中層よりも中層から底層で多く出現する傾向が認められた。浮遊幼生調査の結果から、採苗に適した時期は9月、適した場所は居組港外の4、5、6、9、採苗の垂下水深は中層以深と推察された。
採苗調査は4、4、4、4の4地点で8月31日から9月14日までの15日間実施し、採苗が終了した採苗場は居組港内の魚を下ろしたが、10月下旬の台風21号により全て流失したため、着数数や鉛高の測定には至らなかった。
6 成果の取り扱い
(1) 成果の普及
「但馬水産技術センターだより」、但馬海区漁業調整委員会等を通じて関係漁業者・団体に情報提供を行った。
(2) 成果の発表
平成29年度日本海ブロック資源評価担当者会議において、平成29年の海況・漁況の特徴について報告した。

第1図 但馬定点観測調査地点

第2図 イワガキ調査地点
課題名 底びき漁業資源利用開発調査
1 区分 県単
2 期間 昭和48年度～
3 担当 今馬水産技術センター（大谷徹也・大下博士・尾崎健雄・岡本繁好・藤井一弥・鈴木雅也・山根純弘）
4 目的
今馬海域および隠岐周辺海域におけるトロール網試験操業および底びき網漁獲統計資料による漁獲動向調査を実施し、主に底魚資源の漁獲分布や資源動向についてモニタリングと情報を提供を行うこと、またその他の底魚関連調査を実施することで、底びき網漁業の発展に寄与することを目的とした。
5 成果の要約
(1) 試験方法
ア トロール試験操業
平成29年4月7日～平成30年1月16日のうち9日間、調査船「たじま」により、今馬沖から島根県隠岐北方海域において、着底トロール網（袖先間隔30cm）を用いた底びき網試験操業を実施し、ザイガニ、アカガレイ、ハタハタ等の主要底魚類について現在量および体長組成等のモニタリングを行った。
イ 渔獲動向調査
但馬水産物研究所水産課で収集している魚種別の渔獲統計資料を用いて主要底魚類の漁獲動向調査した。
ウ その他底魚関連調査
(7) 駆け出し漁具改良試験
平成29年5月15～26日の中7日間、ニチモ（株）、西日本ニチモ（株）と共同で、「たじま」の駆け出し漁具（網と曳網）に程度で、網速度計計を装着し、操業時の漁具動態計測を実施した。
ST（完全左右対称）型曳網と、「たじま」所有の魚網を用い、水深150,370,500m付近で計15回操業した。袖網/曳捲手の目合を90/120mmとした大目網と、元網（50/120mm）との比較、打ち申し形状（転針位置）を変える場合の比較を行った。
(4) ハタハタ分布回遊調査
平成30年4月27日および平成30年1月18日、1月22日、3月15日に、今馬沖で半中層トロールによる試験操業と試験魚採取を行った。
平成30年11月11～14日に隠岐東方～北方の沖合域で、半中層トロールによる層別曳網を行いハタハタの中層での発見を試みた。（但州丸（日本水産船）との共同調査）
(2) 成果の概要
ア トロール試験操業
ハタハタは8月の今馬沖～隠岐北方での調査の結果、大山沖～隠岐東方の水深200～230m付近でまとまった入網があった。調査全海域の平均入網重量は44.7kg/網で、前年、過去10年平均を下回った。魚は2才魚（体長16cm前後）が主体で、3才魚（18cm前後）、1才魚（14cm前後）がこれに続いた。
アカガレイでは同調査の今馬沖の240～300mでまとまった入網があった。但馬沖～大山沖の平均入網重量は14.8kg/網で前年、過去10年平均を大きく下回った。
ザイガニは10月の今馬沖での調査の結果、オス（硬）が水深200～350mでの平均入網数は3.2尾/網で前年、過去5年平均を上回り、甲幅13cm前後の中大型個体が多く混ざった。メスが水深253～250mでの平均入網数は37.7尾/網で前年、過去5年平均を大きく下回った。
イ 渔獲動向調査
平成30年5月（満月）漁獲量は、ニギス、ホタルイカ、ソウラチ、ハタハタ、クロザメ等が前年を上回り、ヒレグロ、マダラ、ホッコクアカエビ、アカガレイ、ザイガニ（計）、ベニズワイ等が前年を下回った。
ウ その他底魚関連調査
(7) 装置器用具改良試験
荒手～奥袖部分の網目拡大により曳捲手抵抗の軽減、網の沈降、動き出し、移動速度は著しく、漁具の容積、重量を軽減できるなどの効果が認められた。大水深（水深500m）においても新型曳網の特徴を損ねることなく操業できた。打ち申し形状を変更（変針点を網側に移動）した場合、網の動き出しやすくなることが確認できた。
(4) ハタハタ分布回遊調査
9月に底層曳捲網を始めたハタハタは、水深500mを超える沖合域では中層を利用している可能性が示唆された。昼間の遊泳層は、水温約1℃（0.7～2.1℃）、水深300m前後（225～411m）であった。
着底個体と遊泳個体とを分離して漁獲する2層式トロール網を作成したが、多数の罠物目により破網者取得はならなかった。
6 成果の取り扱い
(1) 成果の普及
ハタハタ、アカガレイ、ザイガニ等の入網状況と漁獲の見通しについて、「平成29年度底びき漁業調査結果報告書」、「但馬水産技術センターだより」を通じて業界に情報提供した。
(2) 成果の発表
「平成29年度第7回西日本底びき漁業勉強会」（平成29年7月）、「平成29年度底びき漁業調査結果報告会」（同月）、「但馬水産技術センターだより」（同8月）、「但馬水産技術センターだより」（同8、10月）にて発表した。
課題名 新漁業管理制度推進情報提供事業（日本海）
1 区 分 受託
2 期 間 平成9年度～
3 担 当 但馬水産技術センター（鈴木雅巳）
4 目 的
沿岸域における漁況情報の収集、分析、漁業関係者への提供機能等を拡充し、TAC制度（漁獲量管理方式による漁業管理制度）の定着に資するとともに、漁業資源の合理的な利用と管理を図る。
5 成果の要約
(1) 試験方法
調査船「たじま」による海洋観測（但馬沖13点、8月調査として実施）、但馬管内各漁協から漁況情報の収集を行った。
なお、調査定点等の詳細については、平成29年度海洋観測、卵稚仔・漁場一斉・新規加入調査指針（国立研究開発法人水産研究・教育機構日本海区水産研究所発行）に記載。
(2) 成果の概要
ア. 平成29年度の但馬沖の8月の水温は、表層は26.1℃（平年差0.72℃）で平年並み、50m深は17.5℃（平年差0.57℃）で平年並み、100m深は13.5℃（平年差0.33℃）で平年並みであった。（水温は全調査地点の平均値、平年差は平成21年を除く平成17年から平成28年の平均値）。
イ. FAX通信による漁況速報の提供を行った（週報：計52回）。
ウ. 渔況の現況や予報について、「但馬水産技術センターだより」により情報提供した（不定期：計43回）。
エ. 但馬沿岸域の水温観測結果速報をFAXにより情報提供した（不定期30回）。
6 成果の取り扱い
(1) 成果の普及
5-2(2)のとおり、漁況情報を漁業者、関係機関等へ提供した。
(2) 成果の発表
海況データは、他府県実施分と総合され、日本海区水産研究所や第八管区海上保安本部によりインターネット上で即時公開されている。また、平成29年度日本海ブロック資源評価担当者会議において、平成29年の海況・漁況の特徴について報告した。

課題名 資源評価調査（日本海）
1 区 分 受託
2 期 間 平成12年度～
3 担 当 但馬水産技術センター（森俊郎・岡本綱宏・大谷徹・鈴木雅巳・山根靖弘・倉橋さつき）
4 目 的
水産庁の委託により、我が国周辺漁業資源の適切な保存と合理的・持続的な利用を図るため、国立研究開発法人水産研究・教育機構又は府県の水産研究機関とともに、資源評価・動向予測・最適管理手法・漁況予測の検討に必要な基礎資料を整備する。
5 成果の要約
(1) 試験方法
国立研究開発法人水産研究・教育機構日本海区水産研究所と作成した調査指針に基づき、資源評価・調査事業として渔場別漁獲状況調査（ペリュワがりにかご漁業）、生物情報収集調査（ブリ、マアジ、マサバ、マイワシ、ズワイガニ、ハタハタ、アカガイ、スルメイカ、ヒラメ、カタクチイワシ、ウルメイワシ、ベニワホ、ホッコクリカエビ、ニギス、ヤリカ、ケンサキイカ、ウマグサハギ、タチウオ、トラフグ）、漁場一斉調査（スルメイカ）、新規加入量調査（ズワイガニ、アカレイ、ベニズワイ）、沿岸資源動向調査（マダイ）、漁船活用調査（ハタハタ）を実施した。
また、漁場形成・漁況予測事業として沿岸沖合海洋観測・卵稚仔調査を実施した。調査定点等の詳細については、平成29年度海洋観測・卵稚仔・漁場一斉・新規加入量調査指針（国立研究開発法人水産研究・教育機構日本海区水産研究所発行）に記載した。
(2) 成果の概要
ア. 調査結果は、国立研究開発法人水産研究・教育機構、各都道府県水産研究機構、漁業情報サービスセンターで構成するネットワークシステム（FRESO）によりオンラインデータベース化された。
イ. 国（水産庁）において、資源評価対象種ごとに「資源評価票」が策定・公表され、国連海洋法条約に基づく資源の管理が行われる。
6 成果の取り扱い
(1) 成果の普及
原則として、国（水産庁）により公表。地域に密着した情報については、「但馬水産技術センターだより」等を通じて関係漁業者・団体に提供した。
(2) 成果の発表
国（水産庁）により公表される。
課題名 資源管理体制高度化推進事業（日本海）

1 区分 受託

2 期間 平成 23 年度～

3 担当 但馬水産技術センター（大谷徹也・山根靖弘・
大下博士・尾崎輝雄）

4 目的
兵庫県ベニガニ協会（旧兵庫県ベニガニ保養協会）では、6月 1 カ月間の休漁（平成 17 年以降継続）
と知事許可船 1 隻の漁船（平成 18 年 9 月）を実施している。
また、知事許可船では平成 20 年 11 月以降内径 10cm
の脱皮口の取り付け（平成 22 年漁期までは 1 個、23 年漁
期からは順次 2 個）を行っている。県はベニガニの適
正な資源管理のあり方について検討することを目的に、
モニタリング調査を実施した。

5 成果の要約

(1) 試験方法
ア 統計調査：ベニガニの銘柄別漁獲量を調査した。
イ 市場調査：平成 29 年 5 月 31 日、同 12 月 16 日及び
平成 30 年 3 月 29 日に、かにかご漁船（知事許可）
について選別前の漁獲物の幅厚と銘柄厚を計測した。
ウ 標本船調査：かにかご漁船（知事許可船）の漁獲成
績報告書を集計整理した。
エ 調査船調査（資源調査）：平成 29 年 6 月 6 日に
漁業調査船「たじま」（199 トン）により、但馬沖の
水深 1300m（100mは欠測）で調査用かにかご（4合
幅 10 節、1 連 10 かご）による試験操業、ならびに水
深 1300、1500m（1700mは欠測）で深海用桁網（間口
幅 4.6m、袋網目合 16 節）による試験操業を実施し
た。また同 7 月 14 日に水深 800m、7 月 24 日に水深
1000mで、深海用桁網による試験操業を実施した。
オ 調査船調査（脱皮成長調査）：平成 29 年 9 月 30
日、平成 30 年 1 月 5 日及び同 9 月 21 日に調査船「た
じま」により水深 1050～1100mで深海用桁網による
サンプリングを行い、甲殻の成長段階の確認を
行った。

(2) 成果の概要
ア 統計調査：平成 28 年漁期（平成 28 年 9 月～平成
29 年 5 月）のベニガニ（知事許可船）銘柄別統計で
は、漁獲量、漁獲金額ともに下位銘柄を中心に前年
より大きく減少した。単価は下位銘柄の上昇により
全体で上昇した。
イ 市場調査：漁獲物の幅厚は 110nm 前後にモー
ドを持ち、甲殻 100mm 未満は 2～3%と僅かで、120mm
以上の大型個体が 37～43%と多かった。
ウ 標本船調査：平成 28 年漁期の知事許可船では、
漁獲量と努力量（揚網数）は前年より大きく減少し
たが、1 連あたり漁獲量は前年を上回り、特に EEZ
内では 1999 年漁期以降初めて 3 トン/連を超えた。
エ 調査船調査（資源調査）：水深 1300m のかご調査に
おいて、漁獲加入直前の甲殻 90mm 前後の最終脱皮
前（ハサミ小）個体が、2010 年以来 7 年ぶりの高
水準で採取された。深海桁網調査では僅かに前年に卓越
年齢群と見られていた甲殻 50mm 前後の個体が、
分布密度を下げながらも水深 1000～1300m を中心
に確認された。
オ 調査船調査（脱皮成長調査）：6、9、3 月調査に
おいて、脱皮直前の状態である二皮がにが出現した。
18mm モードから 23mm モードへの脱皮は、秋季を中
心に行われることが示唆された。

6 成果の取り扱い

(1) 成果の普及
兵庫県ベニガニ協会通常総会（平成 29 年 7 月）にて、
情報提供を行った。

(2) 成果の発表
兵庫県ベニガニ協会通常総会（平成 29 年 7 月）にて
発表した。「平成 29 年度資源管理体制推進事業実績」
を作成し兵庫県資源管理協議会に提出した。
課題名 重要赤潮被害防止対策事業（日本海における大規
模外洋性赤潮の被害防止対策）

1 区 分 受託
2 期 間 平成20年度～
3 担 当 但馬水産技術センター（鈴木雅己）

4 目 的
日本海で発生し漁業被害が顕著になっている外洋性
有害赤潮（Cochlodinium polykrikoides 赤潮）に対応す
るため、島根県、島根県、山口県、国立研究開発法人水
産研究・教育機構瀬戸内海区水産研究所と共同で、その
発生状況や海洋環境について、対馬海峡周辺～日本海南
西海域の漁場モニタリング調査、及び衛星画像解析等に
より、発生機構を解明する。また、流動モデルによる発
生予察技術を開発する。

5 成果の要約
(1) 試験方法
沖合調査、沿岸調査、発生メカニズム解析と発生予
察技術の開発を行った。詳細は、平成29年度漁場環
境・生物多様性保全総合対策委託事業赤潮・貧酸素水
域対策事業「瀬戸内海等での有害赤潮発生機構解明と
予察・被害防止等技術開発」報告書（⑤日本海南西部海
域）に記載した。

(2) 成果の概要
ア 平成29年は、調査期間を通じて検証では
C. polykrikoides は確認されなかった。

イ 平成29年は、韓国沿岸域での C. polykrikoides
による赤潮は発生が確認されなかった。今年度は、
山陰沿岸や隠岐諸島での赤潮形成条件の第1段階
である韓国沿岸で大規模な赤潮が発生しなかった
ため、山陰沿岸での赤潮発生がなかったと推察され
た。漁場モニタリング調査でも C. polykrikoides
は確認されず、これまで構築してきた赤潮発生シナ
リオを支持する結果が得られ、精度向上が図られた。

ウ 事業成果の詳細は、5-(1)の平成29年度事業報告
書に記載した。

6 成果の取り扱い
(1) 成果の普及
調査結果を5-(1)に記載の報告書として取りまと
め、瀬戸内海区水産研究所に提出した。

(2) 成果の発表
平成29年度漁場環境・生物多様性保全総合対策事
業のうち赤潮・貧酸素水域対策推進事業（瀬戸内海等
での有害赤潮発生機構解明と予察・被害防止等技術開
発）結果検討会議で成果の一部を発表した。
課題名 但馬水産加工技術開発試験

1 区分 県単

2 期間 昭和 44 年度～

3 担当 北部農業技術センター農業・加工流通部
（川村芳浩）
但馬水産技術センター（横田智恵）

4 目的
本課題では、水産食品業界で日々発生している問題点を解決し業界の振興を図ることを目的とし、前年度に引き続き県下全域から寄せられた各種加工相談への対応、製品の安全性確保のための分析試験、保蔵試験を行うとともに、新しい加工・保蔵技術の開発、加工工程の省力化技術や機能性開発、未利用資源の有効利用技術開発などの利用研修試験を行う。

5 成果の要約
(1) 試験方法
ア 加工相談：水産食品業界（漁業・水産加工業・流通業）、機械、資材メーカーなどから日常的に寄せられる各種加工相談に対し、来訪者には個別に技術指導を行ったほか、電話やFAX、E-mailなどによる情報提供、現地指導、研修会の開催などを行った。
イ 品質・安全性評価：水産加工業者、漁業者及び技術センターが行う各種試験（加工技術開発試験、品質向上・保持技術開発試験、新製品開発試験及び食味評価の設定など）の結果を科学的根拠を与えて、客観的に評価するため、蛋白質、粗脂肪、炭水化物、灰分等の食品成分分析試験、破壊強度等の物理性測定、保蔵試験、異物調査等を行った。
ウ 利用加工試験：加工相談のうち、新技術や新製品開発に関するもので業界だけでは対応できない内容については、個別に課題化し関連業界の協力を得ながら試験を行った。
(2) 成果の概要
ア 加工相談：平成29年度に対応した全相談件数は308件で、このうち特に多くだったのは保蔵、分析、異物に関するもので全体の約69％を占めていった。また、食品の安全性に関する内容（保蔵、微生物、異物・衛生、法律）は加工相談全体の45%を占めていた。平成29年度の地域開放型試験研究施設の利用は20件であった。但馬漁協の新商品試作やトライヤのウィーク等に対応した。
イ 品質・安全性評価：平成29年度に行った食品成分分析試験の製品数は463品目（延べ項目数879項目）であり、食品の保存性に関する項目（水分活性、pH、塩分、水分、Brix、微生物）は全体の45％を占めた。異物調査を行った製品数は12品目であり、このうち調味加工品が全体の33％を占めた。
ウ 利用加工試験：平成29年度に行った利用加工試験は1課題であった。
その内容は、かにみそ（身入り）加工品（冷凍）中のヒスタミン蓄積量を測定し、零冷凍及び中及び解凍後すぐに加熱調理した製品には、ヒスタミンは3.3mg/100g程度しか蓄積されておらず、ヒスタミン中毒は引き起こさないことを明らかにし、保蔵技術の指導を行った。

6 成果の取り扱い
(1) 成果の普及
品質・安全性評価試験の内容は、各水産加工業者等へ提供した。
(2) 成果の発表
なし。
課題名 県産水産物の脂質特性の把握及び品質評価技術
開発

1 区分 県単
2 期間 平成28年度～30年度
3 担当 北西部技術センター農業・加工流通部
（川村芳浩）
但馬水産技術センター（横田寛恵）

4 目的
水産物のおいしさや旬の判断材料として「脂ののり」が用いられることが多く、加工や調理の用途においても脂肪の量は重要である。このため、天然魚の漁獲時期や部位等による脂肪含量の特性を明らかにするとともに、養殖魚の品質管理や利用、加工方法の選択に活用できるよう、脂肪含量の簡易な評価手法を確立する。

5 成果の要約
(1) 渔期別県産アカガレイの脂肪含量調査
県産アカガレイの春（5月）、夏（7月）、秋（9月）、冬（12月）の脂肪含量を、ソックスレー法で測定した結果、平均脂肪含量は2.0～2.3%でどの漁期も差はなかったが、脂肪含量の最頻出現在は、春、夏が1～2%であったのに対し、秋、冬が2～3%であった。また、脂肪含量の多い個体（3%以上）が、春、冬では出現在しており、少なくとも1月までは、脂肪含量が増加しているように思われた。

(2) 部位別による県産ローカルサーモンの脂肪含量調査
県産ローカルサーモン（海面養殖ニジマス及びサクラマス）の背側と腹側の脂肪含量を測定した結果、ニジマスでは、背側平均が11.7%、腹側平均が18.9%であり、腹側の脂肪含量が多い結果であった。また、サクラマスは、背側平均が11.0%、腹側平均が25.6%であり、腹側の脂肪含量が背側の約2倍もある結果となった。

(3) 異なる産地の海面養殖ニジマス類の脂肪含量調査
県産ローカルサーモンと、ノルウェー産キングサーモンの脂肪含量の比較を行った結果、県産ローカルサーモン（ニジマス及びサクラマス）の脂肪含量は平均17%前後であったのに対し、キングサーモンは平均13.8%であり、県産ローカルサーモンの方が、のりが多くかった。

(4) アカガレイの肥満度等と脂肪含量の相関調査
アカガレイの体長、体重、肥満度（体重/体長×1000）と脂肪含量の間には、相関は見られなかった。

(5) 簡易脂肪計を使用したアカガレイの脂肪含量測定
有効性の検討
簡易脂肪計測器（インピーダンス法）を用いて計測したアカガレイのインピーダンス値と、脂肪含量の間には、次式のような相関が見られた。

\[y = 17.296 - 12.053x_1 - 0.056x_2 \]
\[(x_1: 50Hz/100Hz, x_2: 50Hz/100Hz, R^2 = 0.634) \]

6 成果の取り扱い
(1) 成果の普及
なし。

(2) 成果の発表
なし。
イ 行政依頼事業

課題名 養殖衛生管理体制整備事業

1 区分 国庫助成
2 期間 昭和 54 年度～
3 担当 水産増殖部（中村行延・安信秀樹・小柴貞二）
内水面業漁センター（増田恵一）

4 目的

全国統一的に推進すべき一般魚病対策及び医薬品適正使用の徹底のための対策を推進するとともに、新たな問題となっている魚病に対する重点的な防止対策を行い、魚類防疫体制の推進及び食品としての安全な養殖魚生産の推進を図る。なお、本事業は農林水産省消費・安全局の養殖衛生管理体制整備事業に従い行われた。

5 成果の要約

(1) 成果の概要

ア 総合推進対策

養殖推進対策を具体的に推進する上で必要な事項について検討する全国養殖衛生対策会議への出席、地域合同検討会への出席及び情報の収集を図るとともに県内養殖衛生対策会議を開催し、新たな情報等を伝達した。

イ 養殖衛生管理指導

医薬品の適正使用、適正な養殖管理及びワクチンの適正な使用を徹底するために、適宜養殖生産者に指導を行った。また、養殖衛生管理技術の向上・推進を図るため、養殖生産者に魚病や養殖管理技術の講習会を開催した。

また、水産用抗菌剤使用指導書は 3 通、水産用ワクチン使用指導書は 2 回（50 万尾、20,000kg分）発行した。

ウ 養殖場の調査・管理

養殖生産者に対し、水産用医薬品等の養殖資材についての使用状況を適宜調査・指導。また、医薬品使用したことのある出荷対象魚について、医薬品残留検査を簡易検査法により実施した。対象薬剤は、トラウグ、アマゴ、ニジマスについて塩酸オキシテトラサイクリンの残留検査を行ったが、薬剤の残留は認められなかった。

また、疾病検査の際に分離された細菌について薬剤耐性菌の実態調査を行った（資料にデータ掲載）。

エ 病気対策

養殖水産動物について定期的な疾病検査及び調査を実施することにより、養殖場の疾病監視を行うとともに、魚病被害状況を把握し、併せて養殖生産者等に対する疾病についての適切な予防法、治療法等に関する防制対策指導を行った。また、疾病被害が懸念される場合及び他への感染により重大な被害が予想されるような病気が発生した場合、養殖生産者が水産技術センター及び内水面業業センターに届け出るよう指導し、疾病検査及び診断を行うとともに、必要な防疫対策を講じ、疾病の伝播防止に努めた（魚病診断内容については資料に掲載）。

オ 特定疾病対策

コイヘルペスウイルス病（KHV）未発生水域での新たな本病発生はなかった。

持続的養殖生産確保法において特定疾病に指定されている疾病の蔓延防止対策として実施していたコイヘルペスウイルス病（KH）及びコイ春ウイルス病（SVC）の安全確認検査は、（公社）日本水産資源保護協会での検査を指導したため、実施実績はなかった。また、日本水産資源保護協会での検査において、陽性の報告はなかった。検出用衛生証明書の交付実績もなかった。

カ ヒラスの食中毒原因クドアの調査

ヒラスの食中毒原因クドア（Rudus septempunctata）の保有状況を、農林水産省消費・安全局の指導により調査した。県内のヒラス養殖業者 2 件及び種苗生産施設 4カ所の出荷前種苗の筋肉から抽出した DNA を用いて、PCRにより検査した。養殖魚 36 ロット、60 尾、放流前種苗 42 ロット、210 尾を検査した結果、全て陰性であった。

6 成果の取り扱い

(1) 成果の普及

県下養殖業者及び漁協等にリアルタイムで情報提供し、普及した。

(2) 成果の発表

各種講習会等。
課題名 水産物安全確保対策事業
1 区分 県単
2 期間 平成8年度～
3 担当 水産環境部（宮原一隆・内田健二）
但馬水産技術センター（鈴木雅巳）
4 目的 近年、大阪湾を中心に有毒プランクトンの発生量が増大し、それに伴ってプランクトンを飼とする二枚貝において規制値を超える貝毒が発生するようになっている。そこで、本事業ではアサリ漁場、カキ養殖漁場（以上瀬戸内海）、イワガキ漁場（日本海）の各周辺海域において、貝毒原因プランクトンの出現動向を把握するとともに、マウス試験による貝毒の監視調査を実施し、貝毒による人間の防止を図る。
5 成果の要約
(1) 試験方法
貝毒原因プランクトン調査
調査海域：芦屋市、神戸市、加古川市、姫路市、たつの市、相生市、赤穂市、洲本市、香美町、南伊勢町
調査時期：5月及び3月（アサリ）4～5月及び10～3月（マガキ）6～8月（イワガキ）
調査項目：気象、気象、水質（水温、塩分）、貝毒原因プランクトン細胞密度
貝毒検査：公定法
（県立健康生活科学研究所、一部は民間検査機関）
(2) 成果の概要
ア 麻痺性貝毒：平成29年春季調査では、芦屋海域と瀬戸内海（ともに大阪湾）で規制値を上回る麻痺性貝毒が検出された。原因プランクトンはAlexandrium tamarenseと考えられた。
イ 撥藻類からのアサリ、マガキ検体からは、麻痺性貝毒は検出されなかった（平成29年度内調査）。
日本海におけるイワガキ検体からも、麻痺性貝毒は検出されなかった。
ウ 下痢性貝毒：原因プランクトンの出現はわずかであった。
6 成果の取り扱い
(1) 成果の普及
「兵庫県水産技術センターだより 貝毒情報」「兵庫県但馬水産技術センターだより 貝毒情報」等とし
て漁協等関係機関に情報提供を行った。
(2) 成果の発表
平成29年度漁業環境保全関連研究開発推進特別部会赤潮・貝毒部会で成果の一部を発表した。

課題名 資源管理指針等高度化推進事業対応調査
（旧：資源管理指針等推進事業対応調査）
1 区分 国庫受託
2 期間 平成24年度～31年度
3 担当 但馬水産技術センター（岡本繁好・大谷徹也）
4 目的
神合底びき網漁漁期中には採集されるズワイガニ雄（硬さに、水がに）の時期別漁場別薬効実験の把握と、それを対象とした管理施策を実施した場合の効果をシミュレーションすることで、資源の持続的利用と有効利用を実現するための提供を行う。
5 成果の要約
(1) 試験方法
ア 渔獲統計調査
但馬海域におけるズワイガニ雄の助柄別漁獲量を把握するとともに、代表港における漁獲尾数を推定した。
イ 標本船調査
管内神合底びき網漁船6隻に操業日誌の記載を依頼した。記載内容は操業海域、水深、使用網種、硬さに及び水がにの漁獲尾数と投棄尾数、狙いの魚種とした。
ウ 資源管理方策の効果推定と検討のとりまとめ
標本船日誌調査等で得られたデータを解析し、11月を中心に禁止漁期の期間や水深帯を変化させた場合の効果を試算した。
(2) 成果の概要
ア 渔獲統計調査
但馬海域における平成28年漁期の硬さに及び水がにの漁獲量は410トンと140トンであった。
イ 標本船調査
神合底びき網漁船6隻から操業日誌を回収し、MS-Excel形式でデータ入力を行った。平成28年漁期の1網当たりの平均投棄尾数を未縮成体を中心に平成24～27漁年も増加していることがわかりました。
ウ 資源管理方策の効果推定と検討のとりまとめ
但馬沖、隠岐西方、隠岐北方、隠岐西方、浜田沖の全ての海区において水深375m以深の海域に20日間程度禁漁区を設定することで、取り残しによる金額は増加すると推定された。特に、浜田沖で効果が高いと推定された。
6 成果の取り扱い
(1) 成果の普及
なし。
(2) 成果の発表
平成29年度資源管理指針等高度化推進事業報告書（平成30年3月）。
課題名 ローカルサーモン養殖振興事業

1 区分 県単
2 期間 平成 28 年度～31 年度
3 担当 北部農業技術センター農業・加工流通部
（川村芳浩）
但馬水産技術センター（横田知恵）

4 目的
生鮮輸入サーモンに対抗するため、生食できる養殖国産サーモンとなりうるローカルサーモン養殖を
振興し、地域の活性化をつなげるため、行政機関の
指導のもと生産されたサーモンの成分を分析し、品
質向上の参考に資するとともに、出荷魚の水産用医
薬品の残留検査を実施し、安全安心な養殖魚生産を

5 成果の要約
(1) 供試魚
ア 出荷魚
供試魚は、姫路市芳勢の海中養殖ニジマス及び
南あわじ市福良の海中養殖サクラマスの出荷サイ
ズの魚を使用した。また、一般成分については、
比較のために、ノルウェー産キングサーモンを使
用した。
イ 導入種苗
供試魚は、姫路市芳勢の海中養殖用ニジマス種
苗及び南あわじ市福良の海中養殖用サクラマス
種苗を使用した。
(2) 成分分析
成分分析は、一般成分（水分、全タンパク、粗
脂肪、粗灰分）は当センターで行い、遊離アミノ
酸 16 種類と、脂肪酸二酸化定量化は、委託により行
った。その結果は、一般成分では、ニジマスとサ
クラマスではあまり差はなかったが、キングサー
モンは、県産ローカルサーモンに比べ、水分が多
く粗脂肪が少ない結果となった。遊離アミノ酸は、
10mg/100g 以上の含有が認められたものは、多く
に、ヒスチジン、アラニン、グリシン、リジン、
グルタミン酸であり、ヒスチジン、リジン。グル
タミン酸はニジマスの方が多く、アラニン、グリ
シンは、サクラマスの方が含有量が多かった結果と
なった。また、脂肪酸は、1g/100g 以上の含有が認
められたものは、多い鈴にオレイン酸、パルミチ
ン酸、ドコサヘキサエン酸、リノール酸であり、
ニジマスとサクラマスでの含有量には、差はなかっ
た。
(3) 水産用医薬品残留検査
海中養殖マス類に使用される可能性が高い水産
用医薬品である塩酸オキシトラツラサイクリン（OTC）
の残留検査を、筋肉を使用して行った。OTC の残
ウ 民間等受託研究等

課題名 日本海西部ズワイガニ等調査
（フロンティア調査）

1 区分 受託
2 期間 平成19年度～20年度、22年度～
3 担当 但馬水産技術センター（岡本繁好・大下博士・尾崎整雄・大谷徹也・山根清弘）

4 目的

水産庁が日本海西部海域で設置をしているアカガレイ、ズワイガニを対象とした保護育成礁近辺での漁獲調査等を実施し、広域漁場整備の効果の把握に必要な資料を得るもの。なお、本調査は一般財団法人漁港漁業緩和総合研究所事務局により、「平成29年度日本海西部地区漁場整備環境生物等調査業務に係る漁獲調査等業務」として実施したものである。

5 成果の要約

(1) 試験方法

ア かご網調査
調査船「たじま」を用い、兵庫県但馬沖で第2保護育成礁、第2保護育成礁とその対照区及び第4、第5保護育成礁、島根県浜田沖で第1保護育成礁の第1保護育成礁とその対照区及び第4、第5保護育成礁の第2、第3保護育成礁の第4でかご網による漁獲調査を実施した。操作は各調査点とも1連（20かご）1回とし、浸漬時間は8時間以上とした。

イ 小型トロール調査
調査船「たじま」を用い、但馬沖で第1、第2保護育成礁とその対照区で小型ネット（幅1.6m）による漁獲調査を実施した。曳網は速度2.0ノット前後、時間20分程度、距離1,000mを基本に行った。

ウ トロール調査
調査船「たじま」を用い、但馬沖で第4、第5保護育成礁でトロール網による漁獲調査を実施した。曳網は速度3.0ノット前後、時間30分程度、距離2,700m程度を基本行行った。

(2) 成果の概要
かご網調査は、浜田沖で6月12～14日に、但馬沖は6月14～15日に7月7～10日にそれぞれで実施した。また、小型トロール調査は7月18～19日に、トロール調査は7月5～6日にそれぞれで実施した。調査結果は取りまとめたもの、成果報告書に記載した。

6 成果の取り扱い

(1) 成果の普及
なし。

(2) 成果の発表
平成29年度日本海西部地区漁場整備環境生物等調査業務に係る漁獲調査等業務成果報告書（平成30年1月）。

課題名 大型クラゲ出現調査および情報提供事業

1 区分 受託
2 期間 平成18年度～
3 担当 但馬水産技術センター（鈴木雅己）

4 目的

近年、日本海を中心とする全国各地で大型クラゲ（エチセンクラゲ）による漁業被害が多発している。本事業では、大型クラゲによる漁業被害の軽減や未然防止を図ることを目的とし、国（水産庁）、一般社団法人漁業情報サービスセンター、国立研究開発法人水産研究・教育機構、関係漁業団体、都道府県が連携した調査、監視によって大型クラゲの広域的な分布、来遊状況を迅速に把握するとともに、その情報を広く一般に公表する。

5 成果の要約

(1) 試験方法

ア 大型クラゲ出現情報のとりまとめと情報提供；県下各港（日本海）における出現情報の収集を随時実施した（陸上調査）。

イ 大型クラゲ出現状況調査：漁業調査船「たじま」によって、沿岸～沖合部での大型クラゲの出現状況と出現海域の海洋環境を調査した（洋上調査）。

(2) 成果の概要

ア 沿岸～沖合部での出現状況の監視と海洋環境調査を計6回実施した。

イ 8月の洋上調査では、調査船のトロール網による操作では大型クラゲの入網はなく、目視でも確認されなかった。沖合底びき網漁船からは、9月上旬に1～5個体/網の大型クラゲの入網の報告があり、その後9月下旬にも0～3個体の入網があったが、それ以上は入網の報告はなかった。また、底質調査では、大型クラゲの入網の報告はなかった。沖合での大型クラゲの来遊はごくわずかであり、但馬沿岸への来遊は確認されず、漁業被害の報告もなかった。

ウ 本県海域における大型クラゲの出現状況をとりまとめ、原則1週間ごとに漁業情報サービスセンターに報告した（計29回）。

6 成果の取り扱い

(1) 成果の普及

大型クラゲの分布、来遊量に関する情報は「但馬水産技術センターだより」等を通じて漁業者、漁協等関係者に提供した。また、本県を含む日本海関係機関の情報は、漁業情報サービスセンターに集約され、広範な海域の状況が把握可能な情報を加工され、ホームページ等により公表し、漁業被害の未然防止が図られた。

(2) 成果の発表

平成29年度有害生物出現情報収集・解析及び情報提供委託事業実績報告書。
2 普及活動

(1) 普及指導員の資質の向上

ア 水産業普及指導員担当者会議等
漁業技術等の普及定着を行うために配置された水産業普及指導員を支 援し、各地区間での情報共有を図るため、普及担当者会議を開催した。また、普 及活動に関連する会議として、海洋保全担当者会議や栽培漁業担当者会議を開催した。

水産業普及指導員担当者会議
・月日 平成 30 年 3 月 6 日
・場所 水産技術センター（明石市）
・人数 11 人

海洋保全担当者会議
・月日 平成 29 年 7 月 25 日
・場所 水産技術センター（明石市）
・人数 9 人
・月日 平成 30 年 3 月 6 日
・場所 水産技術センター（明石市）
・人数 13 人

栽培漁業担当者会議
・月日 平成 30 年 2 月 6 日
・場所 水産技術センター（明石市）
・人数 16 人

イ 情報活動
効果的な普及活動を行うために、各地区で実施する研修会等において漁業者と情報交換を行った。また、漁業関係者や県内外の学校関係者、水産関連団 体、新聞社等からの問合せに対して、随時情報提供を行った。

(2) 水産業の指導

ア 技術交流・研修会等

(?) 目 的
漁村地域の活力向上を目指し、各地区の普及班が中心となり、漁業者交流の活動、漁業者協同等の指導等を実施した。

(?) 内 容

A 摂津・播磨地区普及班
a 学習会
・月日 平成 29 年 5 月 20 日
・場所 兵庫県水産会館（明石市）
・内容 「鹿ノ瀬水産の今昔 30 年」

b 技術交流・研修会
・月日 平成 29 年 8 月 22、23 日
・場所 （株）もみじ水産（呉市）、大野水産（有）（廿日市市）
・内容 「6次水産化関連施設、カキ養殖施設等の視察」

B 但馬地区普及班
a 技術交流会
・月日 平成 29 年 7 月 6、7 日
・場所 越前町漁業協同組合（越前町）、
　教務水産基地、教務日本海かなで街
　（敦賀市）
・内容 「意見交換会」「水産加工施設、直販施設の視察」

b 研修会
・月日 平成 29 年 7 月 12 日
・場所 井づみや（新温泉町）
・内容 「日本海におけるスルメイカ等の資源変動と漁獲動向」「日本海西部海域におけるズワイガニの生態と資源動向」

C 淡路地区普及班
a 学習会
・月日 平成 29 年 5 月 26 日
・場所 海鮮酒（淡路市）
・内容 「大阪湾海上交通センターの業務内容と明石海峡における水難防止について」

b 視察研修会
・月日 平成 29 年 8 月 18、19 日
・場所 第五管区海上保安本部、内海水先係
　水先人会（神戸市）、兵庫県水産会館（明石市）
・月日 平成 30 年 2 月 22 日
・場所 シーフードショーや大阪、水産大学校
　実習船「天鷹丸」（大阪府）

イ 新技術開発試験・販売促進活動等

(?) 目 的
漁業者の収入の安定化や向上を図るため、県内各地区において、新たな技術の導入や販売促進の取り組みを指導した。

(?) 内 容

A 摂津・播磨地区普及班
a 新技術開発試験
「タイラギ養殖試験」
　高砂地区において、延繩方式によるタイラギ養殖試験を実施した。
「延繩式カキ養殖試験」
　相生でにおいて、延繩を用いた半沈下式のカキ養殖試験を実施した。
「シングルシェードかき育成試験」
　赤穂市坂越地区において、自家採苗によるシングルシェードかき養殖の実用化試験を実
施した。「漁業者のためのアザリの養殖技術自分養殖」
了の市域漁業において、植物栽培を利用したが、収穫を
使用した技術及び種苗等を活用した殖育試験を実施した。
「ナチュラルエイを活用した特具育成試験」
たの市域漁業において、エイを用いた特具の育成実験を実施した。

b 販売促進活動
明石浦漁協や坊吹漁協等が取り組む、地元
水産物（サラリ、ハモ、カキ等）のPR活動
に対する支援を行った。

B 但馬地区普及班
a 新技術開発試験
「かご養殖試験」
新温泉町地区において、新たなかご漁
業の実証試験を実施した。
「イワガキ養殖試験」
新温泉町地区において、イワガキの採
苗および養殖試験を実施した。

b 販売促進活動
漁業者水産加工業者等が参画した「たじ
まのさかな新製品・新メニューの開発推進チ
ーム」による、水ボール等を用いた新製品
および新メニューの開発・提案や、販売促進
グッズによる但馬水産物のPR等を行っ
た。

C 千路地区普及班
a 新技術開発試験
「アカウニ養殖試験」
洲本市由良地区においてアカウニ養殖試
験の推進を行った。
「ワカメ種苗生産試験開発試験」
南あわじ市南伊勢地区においてワカメの
種苗生産の技術開発試験を実施した。
「一粒カキ養殖試験」
洲本市玉津町においてカキ養殖試験の指
導を行った。

b 販売促進活動
洲本市や淡路市等と連携し、サラリ、生し
らす、3年とらふく等、淡路島の食材のPR
活動を実施した。

ウ 水産教室・魚食普及活動等

(7) 目的
漁業に対する理解を深め、県産水産物の消費拡大
を図るため、中学生や消費者等を対象にした水産
教室や料理教室を実施・指導した。

(3) 生産振興・地域漁業の推進

A 公害調査指導

(7) 目的
漁場環境の監視等により漁場の保全を図り、漁業
経営を安定させることを目的とした。

(4) 内容
漁場の監視および漁業被害の発生時において措
昭すべき事項等の指導を行った。

(9) 成果の取り扱い
A 成果の普及
漁業者・関係団体等からの問い合わせに対応した。
B 成果の発表
なし。

イ 赤潮・貝毒発生監視調査事業
(7) 目的
赤潮および貝毒に関する情報を収集し、漁業関係者に情報を提供することにより、被害の防止・軽減を図ることを目的とした。

(4) 内容
A 試験方法
兵庫県海岸内海沿岸水域6地点で採取されたアサリ・マグボキについて、麻痺性貝毒64検体、但馬沿海水域1地点で採取されたイワガキについて、麻痺性貝毒1検体、計65検体の分析を県立健康生活科学研究所有依頼し、モニタリング調査を実施した。
B 成果の概要
別記の川海老沖調査結果と播磨灘漁場環境定期調査、大阪湾・紀伊水道漁場環境定期調査の結果と合わせ、赤潮の発生状況および貝毒の発生状況を取りまとめた。

(7) 成果の取り扱い
A 成果の普及
電子メール、ホームページ掲載等により、赤潮・貝毒関連調査の結果等の情報を漁業者および関係機関へ提供した。また情報に関する一般県民からの問い合わせに対応した。
B 成果の発表
なし。

ウ 兵庫県漁場環境情報システムの運営
(7) 目的
水温観測ユニット等で得られたデータを漁業者に提供することにより、漁船漁業の漁場選択の一助とするとともに、ノリ養殖業や魚類養殖業における色落ち対策や病害対策を迅速に行うことが可能となり、漁業経営の安定を図る。

(4) 内容
県内5カ所に設置した水温観測ユニットにより数層の水温を10分間隔で測定して時時時データ集積するとともに、既存調査の結果を併せてデータベース化した。また、リアルタイムの水温等の環境情報、衛星画像（水温、クロロフィルa、流速等）、水産技術センターで発行している「水産技術センターだより」等をホームページ上で公開した。

なお、平成29年度にシステムの更新を行い、平成30年4月から新システムの本格的な運用を開始した。

(観測内容)

A 水温観測ユニット

<table>
<thead>
<tr>
<th>観測定点</th>
<th>設置場所</th>
<th>観測層数</th>
</tr>
</thead>
<tbody>
<tr>
<td>明石</td>
<td>明石市中崎地先 深水商事取水桟橋</td>
<td>3層</td>
</tr>
<tr>
<td>福良</td>
<td>南あわじ市福良 南あわじ市浮体式多目的公園</td>
<td>5層</td>
</tr>
<tr>
<td>沼島</td>
<td>南あわじ市沼島 沼島漁港防波堤</td>
<td>5層</td>
</tr>
<tr>
<td>坊勢</td>
<td>姫路市家島町坊勢 坊勢漁港防波堤</td>
<td>4層</td>
</tr>
</tbody>
</table>

観測時間：24時間連続観測（10分ごと）
観測項目：水深別水温
B 水温・塩分観測ユニット
観測定点：明石二見
設置場所：明石市二見町（水産技術センター内・海水取水井戸）
観測層数：1層
観測時間：24時間連続観測（30分ごと）
観測項目：水温、塩分
3 調査船の運航実績

(1) 水産技術センター調査船の運航実績

【新ひょうご】

(起点: 東播磨港)

<table>
<thead>
<tr>
<th>月・日</th>
<th>用務</th>
<th>調査海域</th>
</tr>
</thead>
<tbody>
<tr>
<td>H29.4.</td>
<td>浅海定点調査</td>
<td>播磨灘</td>
</tr>
<tr>
<td>4</td>
<td>浅海定点調査</td>
<td>播磨灘</td>
</tr>
<tr>
<td>5</td>
<td>浅海定点調査</td>
<td>播磨灘・大阪湾</td>
</tr>
<tr>
<td>6</td>
<td>再生調査</td>
<td>播磨灘・大阪湾</td>
</tr>
<tr>
<td>7</td>
<td>常時監視</td>
<td>大阪湾</td>
</tr>
<tr>
<td>8</td>
<td>常時監視</td>
<td>大阪湾</td>
</tr>
<tr>
<td>9</td>
<td>常時監視</td>
<td>紀伊水道</td>
</tr>
<tr>
<td>10</td>
<td>赤潮・荒潮調査</td>
<td>播磨灘</td>
</tr>
<tr>
<td>11</td>
<td>重要水環境調査</td>
<td>大阪湾</td>
</tr>
<tr>
<td>12</td>
<td>重要水環境調査</td>
<td>紀伊水道</td>
</tr>
</tbody>
</table>

4月計

8日	浅海定点調査	播磨灘
9日	浅海定点調査	播磨灘
10日	常時監視・広域調査	大阪湾
11日	常時監視・広域調査	紀伊水道
12日	常時監視	大阪湾
13日	常時監視	紀伊水道
14日	赤潮・荒潮調査	播磨灘
15日	重要水環境調査	播磨灘
16日	重要水環境調査	大阪湾
17日	重要水環境調査	紀伊水道
18日	赤潮・荒潮調査	播磨灘
19日	再生調査	播磨灘・大阪湾
20日	再生調査	大阪湾
21日	再生調査	紀伊水道
22日	再生調査	大阪湾
23日	再生調査	紀伊水道

5月計

7日	浅海定点調査	播磨灘
8日	常時監視	紀伊水道
9日	常時監視	大阪湾
10日	常時監視	紀伊水道
11日	常時監視	大阪湾
12日	常時監視	紀伊水道
13日	赤潮・荒潮調査	播磨灘
14日	重要水環境調査	大阪湾
15日	重要水環境調査	紀伊水道
16日	赤潮・荒潮調査	播磨灘
17日	再生調査	播磨灘・大阪湾
18日	再生調査	大阪湾
19日	再生調査	紀伊水道
20日	再生調査	大阪湾

6月計

9日	浅海定点調査	播磨灘
10日	常時監視	大阪湾
11日	常時監視	紀伊水道
12日	常時監視	大阪湾
13日	常時監視	紀伊水道
14日	赤潮・荒潮調査	播磨灘
15日	重要水環境調査	大阪湾
16日	重要水環境調査	紀伊水道
17日	赤潮・荒潮調査	播磨灘
18日	再生調査	播磨灘・大阪湾
19日	再生調査	大阪湾
20日	再生調査	紀伊水道
21日	再生調査	大阪湾

7月計

12日	浅海定点調査	播磨灘
13日	浅海定点調査	播磨灘
14日	常時監視	大阪湾
15日	常時監視	大阪湾
16日	赤潮・荒潮調査	播磨灘
17日	重要水環境調査	大阪湾
18日	重要水環境調査	紀伊水道
19日	重要水環境調査	大阪湾
20日	重要水環境調査	紀伊水道
21日	重要水環境調査	大阪湾
22日	重要水環境調査	紀伊水道
23日	重要水環境調査	大阪湾
24日	重要水環境調査	紀伊水道
25日	重要水環境調査	大阪湾
26日	重要水環境調査	紀伊水道
27日	重要水環境調査	大阪湾
28日	再生調査	播磨灘・大阪湾

8月計

9日	浅海定点調査	播磨灘
10日	浅海定点調査	播磨灘
11日	常時監視	大阪湾
12日	常時監視	大阪湾
13日	常時監視	大阪湾
14日	常時監視	大阪湾
15日	重要水環境調査	大阪湾
16日	重要水環境調査	紀伊水道
17日	重要水環境調査	大阪湾
18日	重要水環境調査	紀伊水道
19日	重要水環境調査	大阪湾
20日	重要水環境調査	紀伊水道
21日	重要水環境調査	大阪湾
22日	重要水環境調査	紀伊水道
23日	重要水環境調査	大阪湾
24日	重要水環境調査	紀伊水道
25日	重要水環境調査	大阪湾

1月計

<p>| 16日 | 浅海定点調査 | 播磨灘 |</p>
<table>
<thead>
<tr>
<th>月、日</th>
<th>用</th>
<th>務</th>
<th>調査海域</th>
</tr>
</thead>
<tbody>
<tr>
<td>H30.2.1</td>
<td>浅海定線調査</td>
<td>鳥越</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>再生調査</td>
<td>鳥越・大阪湾</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>常時監視</td>
<td>大阪湾</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>珊瑚礁調査</td>
<td>鳥越</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>常時監視</td>
<td>鳥越・紀伊水道</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>常時監視</td>
<td>鳥越</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>再生調査</td>
<td>鳥越・大阪湾</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>珊瑚礁調査</td>
<td>鳥越</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>重要水質環境調査</td>
<td>鳥越</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>重要水質環境調査</td>
<td>鳥越</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>再生調査</td>
<td>鳥越・大阪湾</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>大阪湾北部調査</td>
<td>大阪湾</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>浅海定線調査</td>
<td>鳥越</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>浅海定線調査</td>
<td>鳥越</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2月計</td>
<td>14日</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>再生調査</td>
<td>鳥越・大阪湾</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>常時監視</td>
<td>大阪湾</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>常時監視</td>
<td>鳥越</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>常時監視</td>
<td>紀伊水道</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>再生調査</td>
<td>鳥越・大阪湾</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>珊瑚礁調査</td>
<td>鳥越</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>珊瑚礁調査</td>
<td>鳥越</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>再生調査</td>
<td>鳥越・大阪湾</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3月計</td>
<td>8日</td>
<td></td>
</tr>
<tr>
<td></td>
<td>年計</td>
<td>120日</td>
<td></td>
</tr>
</tbody>
</table>

【ちどり】

<table>
<thead>
<tr>
<th>月、日</th>
<th>用</th>
<th>務</th>
<th>調査海域</th>
</tr>
</thead>
<tbody>
<tr>
<td>H29.5.18</td>
<td>底魚資源調査(沖縄)</td>
<td>鳥越</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>上礁湖航(東播磨〜岩屋)</td>
<td>鳥越</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>下礁湖航(岩屋〜東播磨)</td>
<td>鳥越</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>イカノガ新魚調査(スマル)</td>
<td>鳥越</td>
<td></td>
</tr>
<tr>
<td>5月計</td>
<td>4日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.14</td>
<td>底魚資源調査(沖縄)</td>
<td>鳥越</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>イカノガ新魚調査(スマル)</td>
<td>鳥越</td>
<td></td>
</tr>
<tr>
<td>6月計</td>
<td>2日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.13</td>
<td>底魚資源調査(沖縄)</td>
<td>鳥越</td>
<td></td>
</tr>
<tr>
<td>7月計</td>
<td>1日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.10</td>
<td>底魚資源調査(沖縄)</td>
<td>鳥越</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>イカノガ新魚調査(スマル)</td>
<td>鳥越</td>
<td></td>
</tr>
<tr>
<td>8月計</td>
<td>2日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.13</td>
<td>底魚資源調査(沖縄)</td>
<td>鳥越</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>イカノガ新魚調査(スマル)</td>
<td>鳥越</td>
<td></td>
</tr>
<tr>
<td>10.26</td>
<td>イカノガ新魚調査(スマル)</td>
<td>鳥越</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>浅海定線調査</td>
<td>鳥越</td>
<td></td>
</tr>
<tr>
<td>10月計</td>
<td>2日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.1</td>
<td>浅海定線調査</td>
<td>鳥越</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>イカノガ新魚調査(スマル)</td>
<td>鳥越</td>
<td></td>
</tr>
<tr>
<td>11月計</td>
<td>2日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.4</td>
<td>イカノガ新魚調査(スマル)</td>
<td>鳥越</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>イカノガ新魚調査(スマル)</td>
<td>鳥越</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>イカノガ新魚調査(スマル)</td>
<td>鳥越</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>珊瑚礁調査</td>
<td>鳥越</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>イカノガ新魚調査(スマル)</td>
<td>鳥越</td>
<td></td>
</tr>
<tr>
<td>12月計</td>
<td>5日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1月計</td>
<td>0日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2月計</td>
<td>0日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H30.3.12</td>
<td>再生調査</td>
<td>鳥越</td>
<td></td>
</tr>
<tr>
<td>3月計</td>
<td>1日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>年計</td>
<td>21日</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(2) 但馬水産技術センター調査船の運航実績
【たじま】
（起点：香住東港）

<table>
<thead>
<tr>
<th>月・日</th>
<th>用 務</th>
<th>運行調査海域</th>
</tr>
</thead>
<tbody>
<tr>
<td>4月29. 7</td>
<td>底びき定点調査</td>
<td>但馬沖</td>
</tr>
<tr>
<td>13～14</td>
<td>海洋観測</td>
<td>日本海</td>
</tr>
<tr>
<td>21</td>
<td>海洋観測・水質調査</td>
<td>但馬沖</td>
</tr>
<tr>
<td>24</td>
<td>底びき定点調査</td>
<td>但馬沖</td>
</tr>
<tr>
<td>25～26</td>
<td>海洋観測</td>
<td>日本海</td>
</tr>
<tr>
<td>27</td>
<td>ハタハタ調査</td>
<td>但馬沖</td>
</tr>
<tr>
<td>4月計</td>
<td>8日</td>
<td></td>
</tr>
<tr>
<td>5. 15</td>
<td>駆け出し漁具計測試運転</td>
<td>但馬沖</td>
</tr>
<tr>
<td>17～18</td>
<td>駆け出し漁具計測</td>
<td>但馬沖</td>
</tr>
<tr>
<td>22～23</td>
<td>駆け出し漁具計測</td>
<td>但馬沖</td>
</tr>
<tr>
<td>25～26</td>
<td>駆け出し漁具計測</td>
<td>日本海</td>
</tr>
<tr>
<td>28～31</td>
<td>海洋観測</td>
<td>但馬沖</td>
</tr>
<tr>
<td>5月計</td>
<td>10日</td>
<td></td>
</tr>
<tr>
<td>6. 1</td>
<td>海洋観測・水質調査</td>
<td>但馬沖</td>
</tr>
<tr>
<td>6～7</td>
<td>ペニズワイ調査</td>
<td>日本海</td>
</tr>
<tr>
<td>12～15</td>
<td>フロンティア調査</td>
<td>日本海</td>
</tr>
<tr>
<td>26～30</td>
<td>スルメイカ漁場一斉調査</td>
<td>日本海</td>
</tr>
<tr>
<td>6月計</td>
<td>12日</td>
<td></td>
</tr>
<tr>
<td>7. 3</td>
<td>海洋観測・水質調査</td>
<td>但馬沖</td>
</tr>
<tr>
<td>5</td>
<td>フロンティア調査</td>
<td>但馬沖</td>
</tr>
<tr>
<td>6</td>
<td>フロンティア調査</td>
<td>但馬沖</td>
</tr>
<tr>
<td>10～11</td>
<td>フロンティア調査</td>
<td>但馬沖</td>
</tr>
<tr>
<td>14</td>
<td>ペニズワイ調査</td>
<td>日本海</td>
</tr>
<tr>
<td>18</td>
<td>フロンティア調査</td>
<td>但馬沖</td>
</tr>
<tr>
<td>19</td>
<td>フロンティア調査</td>
<td>但馬沖</td>
</tr>
<tr>
<td>24</td>
<td>ペニズワイ調査</td>
<td>日本海</td>
</tr>
<tr>
<td>25～26</td>
<td>海洋観測</td>
<td>日本海</td>
</tr>
<tr>
<td>31</td>
<td>底びき漁期前調査</td>
<td>但馬沖</td>
</tr>
<tr>
<td>7月計</td>
<td>12日</td>
<td></td>
</tr>
<tr>
<td>8. 1</td>
<td>水産少年教室</td>
<td>但馬沖</td>
</tr>
<tr>
<td>3～4</td>
<td>水産少年教室</td>
<td>但馬沖</td>
</tr>
<tr>
<td>9～10</td>
<td>底びき漁期前調査</td>
<td>但馬沖</td>
</tr>
<tr>
<td>17～19</td>
<td>底びき漁期前調査</td>
<td>隠岐周辺</td>
</tr>
<tr>
<td>28～30</td>
<td>海洋観測</td>
<td>日本海</td>
</tr>
<tr>
<td>8月計</td>
<td>11日</td>
<td></td>
</tr>
<tr>
<td>9. 4</td>
<td>海洋観測・水質調査</td>
<td>但馬沖</td>
</tr>
<tr>
<td>11～14</td>
<td>ハナワラ夢江回遊調査</td>
<td>日本海</td>
</tr>
<tr>
<td>21</td>
<td>ペニズワイ調査</td>
<td>日本海</td>
</tr>
<tr>
<td>25～26</td>
<td>海洋観測</td>
<td>日本海</td>
</tr>
<tr>
<td>27</td>
<td>計量魚探調査</td>
<td>但馬沖</td>
</tr>
<tr>
<td>9月計</td>
<td>9日</td>
<td></td>
</tr>
<tr>
<td>10. 2</td>
<td>海洋観測・水質調査</td>
<td>但馬沖</td>
</tr>
<tr>
<td>5</td>
<td>ペニズワイ漁期前調査</td>
<td>但馬沖</td>
</tr>
<tr>
<td>6</td>
<td>ペニズワイ漁期前調査</td>
<td>但馬沖</td>
</tr>
<tr>
<td>10～11</td>
<td>ペニズワイ漁期前調査</td>
<td>但馬沖</td>
</tr>
<tr>
<td>16～17</td>
<td>海中観察調査</td>
<td>隠岐周辺</td>
</tr>
<tr>
<td>25～27</td>
<td>海洋観測</td>
<td>日本海</td>
</tr>
<tr>
<td>31</td>
<td>アカガレイ新規入漁調査</td>
<td>但馬沖</td>
</tr>
<tr>
<td>10月計</td>
<td>11日</td>
<td></td>
</tr>
<tr>
<td>11. 1</td>
<td>アカガレイ新規入漁調査</td>
<td>但馬沖</td>
</tr>
<tr>
<td>5～6</td>
<td>漁業調査</td>
<td>但馬沖</td>
</tr>
<tr>
<td>8～9</td>
<td>駆航（香住～下関）</td>
<td>日本海</td>
</tr>
<tr>
<td>20～21</td>
<td>駆航（下関～香住）</td>
<td>日本海</td>
</tr>
<tr>
<td>28～29</td>
<td>海洋観測</td>
<td>日本海</td>
</tr>
<tr>
<td>11月計</td>
<td>9日</td>
<td></td>
</tr>
</tbody>
</table>
4 栽培漁業センター事業概要

兵庫県栽培漁業センターは県下の漁業生産の増大を図るため、栽培漁業推進の中核的施設として昭和57年4月に、また但馬栽培漁業センターは兵庫県日本海沿いにおける栽培漁業推進の中核的施設として平成6年4月に開所した。運営管理については公益財団法人ひょうご豊かな海づくり基金に委託して行っている。

(1) 組織

(2) 施設の名称・所在地

兵庫県栽培漁業センター
〒674-0093 明石市二見町南二見22-1
TEL（078）943-8113
FAX（078）941-4611

但馬栽培漁業センター
〒669-6541 美濃市春美町香住区境1126-5
TEL（0796）36-4666
FAX（0796）36-4668

(3) 業務内容及び計画

<table>
<thead>
<tr>
<th>魚 種</th>
<th>平成29年度 生産計画</th>
<th>生産サイズ</th>
<th>備 考</th>
</tr>
</thead>
<tbody>
<tr>
<td>マダイ</td>
<td>43.2万尾</td>
<td>全長20cm</td>
<td>内海</td>
</tr>
<tr>
<td>ヒラメ</td>
<td>78.5万尾</td>
<td>全長20cm</td>
<td>内海</td>
</tr>
<tr>
<td>マコガレイ</td>
<td>35.0万尾</td>
<td>全長20cm</td>
<td>内海</td>
</tr>
<tr>
<td>オニオオコゼ</td>
<td>12.0万尾</td>
<td>全長15cm</td>
<td>内海</td>
</tr>
<tr>
<td>カサゴ</td>
<td>2.0万尾</td>
<td>全長20cm</td>
<td>内海</td>
</tr>
<tr>
<td>アサリ</td>
<td>195.0万個</td>
<td>軸长5cm</td>
<td>内海</td>
</tr>
<tr>
<td>マダイ</td>
<td>30.0万尾</td>
<td>全長20cm</td>
<td>但馬</td>
</tr>
</tbody>
</table>

(4) 業務の実績（要約）

平成29年度業務の実績は下記のとおりであった。

1 兵庫県栽培漁業センター

(1) マダイ種苗生産事業

屋外100kL水槽3面を使用し、平成29年5月10日から7月7日まで飼育を行った結果、平均全長23.6mmの種苗43.2万尾を生産し、漁業協同組合等へ配付した。これらは中間育成後、各地先へ放流された。

(2) ヒラメ種苗生産事業

屋内20kL水槽3面及び50kL水槽3面を使用し、平成29年2月21日から5月9日まで飼育を行った結果、平均全長29.3mmの種苗78.7万尾を生産し、漁業協同組合等へ配付した。これらは中間育成後、各地先へ放流された。

(3) マコガレイ種苗生産事業

屋内30kL水槽6面を使用し、平成30年1月4日から3月19日まで飼育を行った結果、平均全長24.0mmの種苗35.0万尾を生産し、漁業協同組合等へ配付した。これらの種苗のうち一部は各地先へ直接放流され、その他は中間育成後、各地先へ放流された。

(4) オニオオコゼ種苗生産事業

屋内20kL水槽3面及び1kL水槽19面を使用し、平成29年5月31日から7月20日まで飼育を行った結果、平均全長17.6mmの種苗12.0万尾を生産し、漁業協同組合等に配付した。これらは中間育成後、各地先へ放流された。

(5) カサゴ種苗生産事業

屋内15kL水槽2面を使用し、平成29年2月1日から4月6日まで飼育を行った結果、平均全長24.2mmの種苗2.0万尾を生産し、一財）南浦地域漁業振興対策基金に配付した。これらは中間育成後、放流された。

(6) アサリ種苗生産事業

屋内1.1kL水槽3面、1.4kL水槽4面及び屋外1.1kL水槽10面、80kL水槽2面を使用し、平成28年6月28日から平成29年11月22日まで飼育を行った結果、平均全長17.4mmの種苗125.0万尾、平均全長15.1mmの種苗5.0万尾を生産し、漁業協同組合等に配付した。これらは養殖用に供された。
(7) 種苗量産技術開発試験

ア メバル

平成30年1月13日から19日にかけて得られたふ化仔魚13.2万尾を屋内7kl水槽2面に収容し飼育試験を行った。平成30年4月25日までに平均全長31.0mmの稚魚2.8万尾を生産し、試験を終了した。

2 但馬栽培漁業センター

(1) マダイ種苗生産事業

屋内75kl水槽4面を使用し、平成29年5月17日から7月6日まで飼育を行った結果、平均全長26.1mmの稚苗30.0万尾を生産し、但馬漁業協同組合及び浜坂漁業協同組合に配付した。これらの種苗は豊岡市竹野町及び新温泉町三尾において粗放的中間育成後、各地先に放流された。

(2) ヒラメ種苗生産事業

屋内75kl水槽4面を使用し、平成29年2月16日から4月27日まで飼育を行った結果、平均全長38.1mmの稚苗30.0万尾を生産し、但馬漁業協同組合及び浜坂漁業協同組合に配付した。これらの種苗は豊岡市竹野町、香美町久津居及び新温泉町三尾において粗放的中間育成後、各地先に放流された。

(3) カサゴ種苗生産事業

屋内20kl水槽4面を使用し、平成29年2月26日から5月26日まで飼育を行った結果、平均全長45.9mmの稚苗0.5万尾を生産し、直接放流用稚苗として浜坂漁業協同組合に配付した。

(4) キジハタ種苗生産事業

屋内20kl水槽4面及び75kl水槽3面を使用し、平成29年7月19日から10月13日まで飼育を行った結果、平均全長60.5mmの稚苗2.5万尾を生産し、直接放流用稚苗として漁業協同組合等に配付した。

(5) アソビ種苗生産事業

屋内8.7kl水槽10面を使用し、平成27年11月12日から平成29年4月21日まで飼育を行った結果、平均全長22.2mmの稚苗11.7万個を生産し、直接放流用として漁業協同組合等に配付した。なお、次年度配付用稚苗の生産は平成28年11月9日から開始している。

(6) サザエ種苗生産事業

屋内2.5kl水槽11面及び屋外80kl水槽2面を使用し、平成27年6月30日から平成29年10月20日まで飼育を行った結果、平均全長8.0mmの稚苗1.5万個、平均全長17.5mmの稚苗15.2万個を生産し、中間育成及び直接放流用として漁業協同組合等に配付した。なお、次年度配付用稚苗の生産は平成28年6月28日から開始している。

(7) 種苗量産技術開発試験

ア ジワイガニ
(5) 種苗配付実績（平成29年度）

【兵庫県栽培漁業センター】

<table>
<thead>
<tr>
<th>種 名</th>
<th>年月日</th>
<th>配付先</th>
<th>配付数（尾・個）</th>
<th>サイズ（mm）</th>
</tr>
</thead>
<tbody>
<tr>
<td>マダイ</td>
<td>H29. 7.6</td>
<td>(一財)神戸みのりの公社</td>
<td>100,000</td>
<td>23.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>明石市漁業組合連合会</td>
<td>12,000</td>
<td>23.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>淀路西浦地区栽培漁業推進協議会</td>
<td>20,000</td>
<td>23.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>淀路東浦栽培漁業協議会</td>
<td>20,000</td>
<td>23.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>吉良町漁業協同組合青壮年部</td>
<td>30,000</td>
<td>23.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(一財)南摩地域漁業振興対策基金</td>
<td>250,000</td>
<td>23.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>計</td>
<td>432,000</td>
<td></td>
</tr>
<tr>
<td>ヒラメ</td>
<td>H29. 4.10</td>
<td>明石市漁業組合連合会</td>
<td>26,200</td>
<td>29.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>鹿ノ瀬漁協開発協議会</td>
<td>110,000</td>
<td>29.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>淀路西浦地区栽培漁業推進協議会</td>
<td>37,500</td>
<td>29.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>淀路東浦栽培漁業協議会</td>
<td>100,000</td>
<td>29.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>淀路本町栽培漁業協同組合青壮年部</td>
<td>20,000</td>
<td>28.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(一財)南摩地域漁業振興対策基金</td>
<td>180,000</td>
<td>28.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>姫路市漁民組合連合会</td>
<td>60,000</td>
<td>29.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>家島漁業協同組合</td>
<td>10,000</td>
<td>31.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>坊勢漁業協同組合</td>
<td>54,000</td>
<td>31.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>高砂市漁業組合連合会</td>
<td>36,500</td>
<td>31.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>東播磨漁業協同組合</td>
<td>10,200</td>
<td>31.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(一財)西播磨地域漁業振興会</td>
<td>20,000</td>
<td>31.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>坊勢漁業協同組合</td>
<td>60,000</td>
<td>31.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>家島・坊勢漁業組合連合会</td>
<td>62,500</td>
<td>26.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>計</td>
<td>786,900</td>
<td></td>
</tr>
<tr>
<td>マコガレイ</td>
<td>H30. 3.13</td>
<td>姫路市漁民組合連合会</td>
<td>30,000</td>
<td>24.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(一財)南摩地域漁業振興対策基金</td>
<td>40,000</td>
<td>24.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>赤穂市漁業協同組合</td>
<td>10,000</td>
<td>24.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>高砂市漁業組合連合会</td>
<td>20,000</td>
<td>24.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>相生漁業協同組合</td>
<td>15,000</td>
<td>22.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>岩見漁業協同組合</td>
<td>20,000</td>
<td>22.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>東播磨地方漁業協議会</td>
<td>10,000</td>
<td>22.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(一財)神戸みのりの公社</td>
<td>30,000</td>
<td>24.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>室津漁業協同組合</td>
<td>20,000</td>
<td>24.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>明石市漁業組合連合会</td>
<td>10,000</td>
<td>24.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>淀路西浦地区栽培漁業推進協議会</td>
<td>20,000</td>
<td>24.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>淀路東浦栽培漁業協議会</td>
<td>20,000</td>
<td>24.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>東播磨漁業連絡協議会</td>
<td>20,000</td>
<td>24.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>東播磨漁業協同組合</td>
<td>25,000</td>
<td>24.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>坊勢漁業協同組合</td>
<td>60,000</td>
<td>24.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>計</td>
<td>350,000</td>
<td></td>
</tr>
<tr>
<td>オニオコゼ</td>
<td>H29. 7.13</td>
<td>(一財)南摩地域漁業振興対策基金</td>
<td>56,000</td>
<td>17.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>淀路西浦地区栽培漁業推進協議会</td>
<td>7,000</td>
<td>17.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>東播磨漁業連絡協議会</td>
<td>6,000</td>
<td>17.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>淀路本町栽培漁業推進協議会</td>
<td>5,000</td>
<td>17.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>姫路市漁民組合連合会</td>
<td>10,000</td>
<td>18.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>坊勢漁業協同組合</td>
<td>36,000</td>
<td>18.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>計</td>
<td>120,000</td>
<td></td>
</tr>
<tr>
<td>カサゴ</td>
<td>H29. 4.6</td>
<td>(一財)南摩地域漁業振興対策基金</td>
<td>20,000</td>
<td>24.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>計</td>
<td>20,000</td>
<td></td>
</tr>
<tr>
<td>アサリ</td>
<td>H29. 4.20</td>
<td>赤穂市漁業協同組合</td>
<td>140,000</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>室津漁業協同組合</td>
<td>760,000</td>
<td>7.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>姫路市漁業協同組合</td>
<td>56,000</td>
<td>15.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>相生漁業協同組合</td>
<td>170,000</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>岩見漁業協同組合</td>
<td>12,000</td>
<td>13.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>姫路市漁業協同組合</td>
<td>34,000</td>
<td>8.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>室津漁業協同組合</td>
<td>280,000</td>
<td>8.9</td>
</tr>
<tr>
<td>種名</td>
<td>年月日</td>
<td>配付先</td>
<td>配付数（尾・個）</td>
<td>サイズ（mm）</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>マダイ</td>
<td>H29. 7. 6</td>
<td>浜坂漁業協同組合</td>
<td>200,000</td>
<td>26.1</td>
</tr>
<tr>
<td></td>
<td>7. 6</td>
<td>但馬漁業協同組合</td>
<td>100,000</td>
<td>26.1</td>
</tr>
<tr>
<td>計</td>
<td></td>
<td></td>
<td>300,000</td>
<td></td>
</tr>
<tr>
<td>ヒラメ</td>
<td>H29. 4. 27</td>
<td>但馬漁業協同組合</td>
<td>200,000</td>
<td>38.1</td>
</tr>
<tr>
<td></td>
<td>4. 27</td>
<td>浜坂漁業協同組合</td>
<td>100,000</td>
<td>38.1</td>
</tr>
<tr>
<td>計</td>
<td></td>
<td></td>
<td>300,000</td>
<td></td>
</tr>
<tr>
<td>カサゴ</td>
<td>H29. 5. 26</td>
<td>浜坂漁業協同組合</td>
<td>5,000</td>
<td>45.9</td>
</tr>
<tr>
<td>計</td>
<td></td>
<td></td>
<td>5,000</td>
<td></td>
</tr>
<tr>
<td>キジハタ</td>
<td>H29. 9. 26</td>
<td>高砂市漁業組合連合会</td>
<td>1,000</td>
<td>73.9</td>
</tr>
<tr>
<td></td>
<td>9. 28</td>
<td>浜坂漁業協同組合</td>
<td>1,000</td>
<td>70.5</td>
</tr>
<tr>
<td>10. 5</td>
<td>浜坂漁業協同組合</td>
<td>3,000</td>
<td>62.6</td>
<td></td>
</tr>
<tr>
<td>10. 5</td>
<td>浜坂漁業協同組合</td>
<td>6,000</td>
<td>62.6</td>
<td></td>
</tr>
<tr>
<td>10. 5</td>
<td>浜坂漁業協同組合</td>
<td>5,000</td>
<td>62.6</td>
<td></td>
</tr>
<tr>
<td>10. 6</td>
<td>(一財) 南部地域漁業振興対策基金基金</td>
<td>1,000</td>
<td>57.2</td>
<td></td>
</tr>
<tr>
<td>10. 11</td>
<td>明石市漁業組合連合会</td>
<td>5,000</td>
<td>53.8</td>
<td></td>
</tr>
<tr>
<td>10. 13</td>
<td>(一財) 神戸みちのりの公社</td>
<td>3,000</td>
<td>55.1</td>
<td></td>
</tr>
<tr>
<td>計</td>
<td></td>
<td></td>
<td>25,000</td>
<td></td>
</tr>
<tr>
<td>アワビ</td>
<td>H29. 4. 4</td>
<td>浜坂漁業協同組合</td>
<td>2,000</td>
<td>20.4</td>
</tr>
<tr>
<td>4. 5</td>
<td>浜坂漁業協同組合</td>
<td>4,000</td>
<td>21.2</td>
<td></td>
</tr>
<tr>
<td>4. 5</td>
<td>浜坂漁業協同組合</td>
<td>15,500</td>
<td>21.2</td>
<td></td>
</tr>
<tr>
<td>4. 6</td>
<td>高砂市漁業組合連合会</td>
<td>850</td>
<td>23.1</td>
<td></td>
</tr>
<tr>
<td>4. 6</td>
<td>但馬漁業協同組合</td>
<td>3,000</td>
<td>23.1</td>
<td></td>
</tr>
<tr>
<td>4. 12</td>
<td>但馬漁業協同組合</td>
<td>10,000</td>
<td>23.5</td>
<td></td>
</tr>
<tr>
<td>4. 18</td>
<td>姪路市</td>
<td>7,000</td>
<td>23.9</td>
<td></td>
</tr>
<tr>
<td>4. 18</td>
<td>浜坂漁業協同組合</td>
<td>15,500</td>
<td>21.6</td>
<td></td>
</tr>
<tr>
<td>4. 18</td>
<td>(一財) 南部地域漁業振興対策基金基金</td>
<td>3,000</td>
<td>21.6</td>
<td></td>
</tr>
<tr>
<td>4. 18</td>
<td>浜坂漁業協同組合</td>
<td>14,000</td>
<td>20.4</td>
<td></td>
</tr>
<tr>
<td>4. 19</td>
<td>浜坂漁業協同組合</td>
<td>8,500</td>
<td>25.0</td>
<td></td>
</tr>
<tr>
<td>4. 20</td>
<td>但馬漁業協同組合</td>
<td>2,000</td>
<td>23.1</td>
<td></td>
</tr>
<tr>
<td>4. 20</td>
<td>(一財) 神戸みちのりの公社</td>
<td>1,000</td>
<td>24.8</td>
<td></td>
</tr>
<tr>
<td>4. 21</td>
<td>姪路市</td>
<td>15,000</td>
<td>22.3</td>
<td></td>
</tr>
<tr>
<td>4. 21</td>
<td>家島漁業集落</td>
<td>3,500</td>
<td>22.3</td>
<td></td>
</tr>
<tr>
<td>4. 21</td>
<td>坊勢島漁業集落</td>
<td>12,000</td>
<td>22.3</td>
<td></td>
</tr>
<tr>
<td>計</td>
<td></td>
<td></td>
<td>116,850</td>
<td></td>
</tr>
<tr>
<td>サザエ</td>
<td>H29. 4. 6</td>
<td>高砂市漁業組合連合会</td>
<td>500</td>
<td>23.2</td>
</tr>
<tr>
<td>4. 18</td>
<td>姪路市</td>
<td>15,000</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>4. 18</td>
<td>浜坂漁業協同組合</td>
<td>4,500</td>
<td>20.2</td>
<td></td>
</tr>
<tr>
<td>4. 20</td>
<td>(一財) 神戸みちのりの公社</td>
<td>1,000</td>
<td>23.4</td>
<td></td>
</tr>
<tr>
<td>4. 21</td>
<td>姪路市</td>
<td>14,000</td>
<td>18.7</td>
<td></td>
</tr>
<tr>
<td>4. 21</td>
<td>家島漁業集落</td>
<td>16,000</td>
<td>18.7</td>
<td></td>
</tr>
<tr>
<td>4. 21</td>
<td>坊勢島漁業集落</td>
<td>40,000</td>
<td>18.7</td>
<td></td>
</tr>
<tr>
<td>10. 16</td>
<td>浜坂漁業協同組合</td>
<td>10,000</td>
<td>16.1</td>
<td></td>
</tr>
<tr>
<td>10. 16</td>
<td>(一財) 南部地域漁業振興対策基金基金</td>
<td>10,000</td>
<td>16.1</td>
<td></td>
</tr>
<tr>
<td>10. 17</td>
<td>浜坂漁業協同組合</td>
<td>15,500</td>
<td>16.1</td>
<td></td>
</tr>
<tr>
<td>10. 18</td>
<td>但馬漁業協同組合</td>
<td>20,000</td>
<td>16.1</td>
<td></td>
</tr>
<tr>
<td>10. 20</td>
<td>但馬漁業協同組合</td>
<td>2,000</td>
<td>16.1</td>
<td></td>
</tr>
<tr>
<td>10. 20</td>
<td>浜坂漁業協同組合</td>
<td>18,000</td>
<td>16.1</td>
<td></td>
</tr>
<tr>
<td>計</td>
<td></td>
<td></td>
<td>166,500</td>
<td></td>
</tr>
</tbody>
</table>